# A 184nW, 121µg/√Hz Noise Floor Triaxial MEMS Accelerometer with Integrated CMOS Readout

**Circuit and Variation-Compensated High Voltage MEMS Biasing** 

Yimai Peng<sup>1</sup>, Seokhyeon Jeong<sup>1</sup>, Kyojin Choo<sup>1</sup>, Yejoong Kim<sup>1</sup>, Li-Yu Chen<sup>1</sup>, Rohit Rothe<sup>1</sup>, Li Xu<sup>1</sup>, Ilya Gurin<sup>2</sup>, Omid

Oliaei<sup>2</sup>, Vadim Tsinker<sup>2</sup>, Stephen Bart<sup>2</sup>, Peter Hartwell<sup>2</sup>, David Blaauw<sup>1</sup>, Dennis Sylvester<sup>1</sup>

<sup>1</sup>University of Michigan, Ann Arbor, MI, USA, <sup>2</sup>InvenSense Inc., San Jose, CA, USA

#### Abstract

We present a triaxial MEMS accelerometer readout circuit (RoC) with 40× signal gain using a high MEMS bias voltage, reducing power by eliminating the need for a chopped AFE chain. The proposed RoC achieves a  $121\mu g/\sqrt{Hz}$  input referred noise and 1.5g dynamic range at 184nW per-axis power, while maintaining <1% non-linearity and a mechanical full-scale of >20 g, improving FoM by 15.6×.

# **Introduction and Proposed Approach**

MEMS capacitive accelerometers are critical in IoT due to their miniaturized volume [1][7]. Prior RoCs [5][6] employ low noise amplifiers and input signal chopping to reduce thermal and flicker noise, respectively, and/or generate a feedback signal to the MEMS sensor to achieve higher acceleration sensitivity [2][3] (Fig. 1). However, the fundamental power/noise trade-off makes it difficult to achieve both  $< \mu W$  power and <5 mg input noise in these approaches.

Instead of reducing RoC noise (and subsequently increasing power), we propose raising the MEMS signal amplitude by increasing the MEMS bias voltage, thereby improving the power/noise trade-off and removing the need for power hungry chopping (Fig. 2). Further, at a high bias the effect from the electrostatic force reduces proof-mass stiffness and increases MEMS mechanical sensitivity. This increases the signal super-linearly with bias voltage, but reduces the proofmass's dynamic range and risks electrostatic pull-in [8]. This is exacerbated by inherent MEMS mismatch from manufacturing variations. Hence, we also introduce a companion high voltage generation chip (HVC) designed to generate the MEMS bias voltages with high differential voltage precision. To raise the maximum bias voltage (and hence signal), HVC applies an automatically determined bias voltage skew to achieve post-fabrication electrostatic mismatch cancelation (EMC), maintaining linearity and dynamic range.

### **Circuit Implementation**

Fig. 3 shows that the MEMS sensing element is modeled as a differential capacitor bridge created by the gaps between the proofmass and fixed electrodes. We apply  $\pm$  DC bias voltages (V<sub>B+</sub> and V<sub>B-</sub>) to the fixed electrodes, and a differential MEMS voltage signal (VIN+ and VIN-) is generated once the capacitance changes with proof-mass displacement due to acceleration. This signal is amplified by the RoC to produce either a 1-bit signal in a 1.2V V<sub>DD</sub> motion detection (MD) mode or a 2V V<sub>DD</sub> full resolution analog output in full functionality (FF) mode. The RoC chip is eutecticly bonded to the MEMS sensing element to minimize signal loss due to interconnect parasitics. Since V<sub>IN+</sub> and V<sub>IN-</sub> are proportional to V<sub>B+</sub> and V<sub>B-</sub> (ignoring the MEMS sensitivity increase), the MEMS signal can be raised above the flicker and thermal noise floors by increasing bias voltage, eliminating the need for power hungry signal chopping and large amplifier bias currents. The low-noise amplifier (LNA) and programmable-gain amplifier (PGA) are carefully designed in terms of sizing and gain settings to mitigate added flicker noise due to the non-chopping signal path. LNA/PGA output common modes are shifted by auxiliary amplifiers to bias the input pairs for maximum dynamic range.

The HVC chip generates a fine-grained V<sub>B+</sub> and V<sub>B-</sub> pair to achieve electrostatic balance on the proof-mass. As shown in Fig. 4, VB+ and V<sub>B-</sub> are generated with two Dickson charge pumps. V<sub>B+</sub> is capacitively sampled and divided by 20 (due to comparator voltage limits), then compared with a reference voltage V<sub>CM</sub> to provide feedback to control the charge pump operation. However, error on V<sub>CM</sub> manifests as 20× larger on V<sub>B+</sub>, so it only serves as a coarse control of the bias voltages. For fine control of  $\Delta V_B$  ( $|V_{B+}|$  -  $|V_{B-}|$ ), which determines the intentional bias voltage skew on proof-mass and cancels out the electrostatic force mismatch due to MEMS fabrication or circuit nonideality, we sample the average of V<sub>B+</sub> and V<sub>B-</sub> using capacitive charge sharing. Using a comparator, we then force  $V_{B-}$  to follow  $V_{B+}$ with an absolute voltage difference of  $\Delta V_B$ . To generate a precise V<sub>CM</sub>

and  $\Delta V_B$ , HVC first generates an internal bias voltage  $V_{2P0}$  [9], and then buffers it and applies it across a 128-step poly-resistor divider with ~35mV resolution and 44dB PSRR. Ripple on VB+ and VB- could be 100s of mV due to charge pump operation and voltage sampling, impacting proof-mass displacement and inducing common-mode noise. We address this by separating the "clean" bias voltage nodes  $(CV_{B+}, CV_{B-})$  from "dirty" ones  $(DV_{B+}, DV_{B-})$  through a large-timeconstant (~0.1s) RC network. Before sampling, DV<sub>B+</sub> and DV<sub>B-</sub> precharge the parasitic capacitors (phase  $\Phi_2$ ) to approximately the correct voltage, and then CV<sub>B+</sub> and CV<sub>B-</sub> are sampled with much reduced charge movement (phase  $\Phi_3$ ). This reduces ripple on  $CV_{B+}/CV_{B-}$ , and the voltage is further filtered with another RC network (for pull-in voltage spike protection) to generate final bias voltages VB+/-.

## **Measurement Results**

The RoC was fabricated in a MEMS-integrated 180nm CMOS process and the companion HVC in HVBCD 180nm. A shaker table (The Modal Shop Inc. 2075E) generates 3 axes accelerations, but only z-axis results are shown due to page constraints. RoC bandwidth is selected as 5-200Hz, targeting motion detection applications, and can be extended by changing RoC feedback resistor design. Fig. 5 shows measured HVC bias outputs (VB+/VB-) from cold startup until steady state, precisely suppressing  $\Delta V_B$  within 0.1% of full scale. As the bias voltage ramps up, the output signal increases proportionally and stabilizes at 56dB SNDR in FF mode. At the same condition, MD mode detects input accelerations down to 3mg.

An important question is how to set the value of  $V_{B+}$  and  $V_{B-}$  to achieve maximum signal increase while maintaining sufficient MEMS dynamic range. Fig. 6 shows accelerometer sensitivity for all  $V_{B+}/V_{B-}$  combinations at >20V for a typical chip sample (#1), showing an optimal 1.2V  $\Delta V_B$ . Maintaining  $\Delta V_B$ =1.2V, we then increase  $V_{B+}$ along the red dotted line at zero g until the pull-in point (zero mechanical full-scale) and then back off from this point to guarantee > 20g peak-to-peak mechanical dynamic range (see also Fig. 9). Note that at > 20g the mechanical dynamic range greatly exceeds the accelerometer full-scale (±1.5g in FF mode and much lower in MD mode) and does not limit accelerometer performance. We tested 30 samples from 5 different wafers in this way and Fig. 7 shows the resulting distribution of  $\Delta V_B$ . Fig. 8 shows the distribution of the resulting sensitivity in three cases where: 1) EMC is optimally applied to each sample (red); 2) a batch level EMC  $\Delta V_B$  and back-off value are used, reducing testing to a minimum (blue); 3) no EMC is applied (black). Optimal EMC yields the highest mean sensitivity of 784mV/g (1.65× increase over no EMC). Batch level EMC incurs a sensitivity penalty of 24% at 596mV/g from optimal EMC but remains 25% better than no EMC. Finally, to characterize accelerometer reliability in case a large acceleration causes pull-in, we also performed a longterm, repeated pull-in test showing no degradation in accelerometer functionality after >10K pull-ins.

Compared to a MEMS with a typical bias of 4V, the proposed RoC achieves 40× gain in sensitivity (optimal EMC) at 775mV/g output sensitivity and 0.6% linearity error. It also achieves  $121\mu g/\sqrt{Hz}$  and  $165\mu g/\sqrt{Hz}$  noise floors for FF and MD modes, while consuming 110nW and 22.4nW, respectively. Dividing the 223nW HVC power across the triaxial MEMS units, the RoC and HVC chips consume a total of 184nW in FF mode and 96nW in MD mode per axis. Table 1 compares the accelerometer performance with prior work, showing a

15.6× FOM (Noise × Power /  $\sqrt{BW}$ ) improvement over prior art.

### References

- [1] Y. Kamada et al., JMEMS, 2019. [2] H. Xu et al., JSSC, 2015.
- [3] M. Yucetas et al., JSSC, 2012. [4] AD ADXL362, Rev. F.
- [6] I. Akita et al., VLSI, 2018. [5] X. Wang et al., JSSC, 2017.
- [7] D. Tran et al., J. Sensors, 2021.
- [8] M. Younis., et al., JMEMS, 2003. [9] I. Lee et al., JSSC, 2017.



Authorized licensed use limited to: University of Michigan Library. Downloaded on September 26,2022 at 19:04:06 UTC from IEEE Xplore. Restrictions apply.