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Abstract 
We present a triaxial MEMS accelerometer readout circuit (RoC) with 
40× signal gain using a high MEMS bias voltage, reducing power by 
eliminating the need for a chopped AFE chain. The proposed RoC 

achieves a 121µg/√Hz input referred noise and 1.5g dynamic range 

at 184nW per-axis power, while maintaining <1% non-linearity and a 
mechanical full-scale of >20 g, improving FoM by 15.6×. 

Introduction and Proposed Approach 
MEMS capacitive accelerometers are critical in IoT due to their 

miniaturized volume [1][7]. Prior RoCs [5][6] employ low noise 
amplifiers and input signal chopping to reduce thermal and flicker 
noise, respectively, and/or generate a feedback signal to the MEMS 
sensor to achieve higher acceleration sensitivity [2][3] (Fig. 1). 
However, the fundamental power/noise trade-off makes it difficult to 
achieve both < µW power and <5 mg input noise in these approaches. 

Instead of reducing RoC noise (and subsequently increasing power), 
we propose raising the MEMS signal amplitude by increasing the 
MEMS bias voltage, thereby improving the power/noise trade-off  and 
removing the need for power hungry chopping (Fig. 2). Further, at a 
high bias the effect from the electrostatic force reduces proof-mass 
stiffness and increases MEMS mechanical sensitivity. This increases 
the signal super-linearly with bias voltage, but reduces the proof-
mass’s dynamic range and risks electrostatic pull-in [8]. This is 
exacerbated by inherent MEMS mismatch from manufacturing 
variations.  Hence, we also introduce a companion high voltage 
generation chip (HVC) designed to generate the MEMS bias voltages 
with high differential voltage precision. To raise the maximum bias 
voltage (and hence signal), HVC applies an automatically determined 
bias voltage skew to achieve post-fabrication electrostatic mismatch 
cancelation (EMC), maintaining linearity and dynamic range.  

Circuit Implementation 
Fig. 3 shows that the MEMS sensing element is modeled as a 

differential capacitor bridge created by the gaps between the proof-
mass and fixed electrodes. We apply ± DC bias voltages (VB+ and VB-) 
to the fixed electrodes, and a differential MEMS voltage signal (VIN+ 
and VIN-) is generated once the capacitance changes with proof-mass 
displacement due to acceleration. This signal is amplified by the RoC 
to produce either a 1-bit signal in a 1.2V VDD motion detection (MD) 
mode or a 2V VDD full resolution analog output in full functionality 
(FF) mode. The RoC chip is eutecticly bonded to the MEMS sensing 
element to minimize signal loss due to interconnect parasitics. Since 
VIN+ and VIN- are proportional to VB+ and VB- (ignoring the MEMS 
sensitivity increase), the MEMS signal can be raised above the flicker 
and thermal noise floors by increasing bias voltage, eliminating the 
need for power hungry signal chopping and large amplifier bias 
currents. The low-noise amplifier (LNA) and programmable-gain 
amplifier (PGA) are carefully designed in terms of sizing and gain 
settings to mitigate added flicker noise due to the non-chopping signal 
path. LNA/PGA output common modes are shifted by auxiliary 
amplifiers to bias the input pairs for maximum dynamic range.  

The HVC chip generates a fine-grained VB+ and VB- pair to achieve 
electrostatic balance on the proof-mass. As shown in Fig. 4, VB+ and 
VB- are generated with two Dickson charge pumps. VB+ is capacitively 
sampled and divided by 20 (due to comparator voltage limits), then 
compared with a reference voltage VCM to provide feedback to control 
the charge pump operation.  However, error on VCM manifests as 20× 
larger on VB+, so it only serves as a coarse control of the bias voltages. 
For fine control of ∆VB (|VB+| - |VB-|), which determines the 
intentional bias voltage skew on proof-mass and cancels out the 
electrostatic force mismatch due to MEMS fabrication or circuit non-
ideality, we sample the average of VB+ and VB- using capacitive 
charge sharing. Using a comparator, we then force VB- to follow VB+ 
with an absolute voltage difference of ∆VB. To generate a precise VCM 

and ∆VB, HVC first generates an internal bias voltage V2P0 [9], and 
then buffers it and applies it across a 128-step poly-resistor divider 
with ~35mV resolution and 44dB PSRR. Ripple on VB+ and VB- could 
be 100s of mV due to charge pump operation and voltage sampling, 
impacting proof-mass displacement and inducing common-mode 
noise. We address this by separating the “clean” bias voltage nodes 
(CVB+, CVB-) from “dirty” ones (DVB+, DVB-) through a large-time-
constant (~0.1s) RC network. Before sampling, DVB+ and DVB- pre-
charge the parasitic capacitors (phase Ф2) to approximately the correct 
voltage, and then CVB+ and CVB- are sampled with much reduced 
charge movement (phase Ф3). This reduces ripple on CVB+/CVB-, and 
the voltage is further filtered with another RC network (for pull-in 
voltage spike protection) to generate final bias voltages VB+/-.  

Measurement Results 
The RoC was fabricated in a MEMS-integrated 180nm CMOS 

process and the companion HVC in HVBCD 180nm. A shaker table 
(The Modal Shop Inc. 2075E) generates 3 axes accelerations, but only 
z-axis results are shown due to page constraints. RoC bandwidth is 
selected as 5−200Hz, targeting motion detection applications, and can 
be extended by changing RoC feedback resistor design. Fig. 5 shows 
measured HVC bias outputs (VB+/VB-) from cold startup until steady 
state, precisely suppressing ∆VB within 0.1% of full scale. As the bias 
voltage ramps up, the output signal increases proportionally and 
stabilizes at 56dB SNDR in FF mode. At the same condition, MD 
mode detects input accelerations down to 3mg.  

An important question is how to set the value of VB+ and VB- to 
achieve maximum signal increase while maintaining sufficient 
MEMS dynamic range. Fig. 6 shows accelerometer sensitivity for all 
VB+/VB- combinations at >20V for a typical chip sample (#1), showing 
an optimal 1.2V ∆VB. Maintaining ∆VB=1.2V, we then increase VB+ 
along the red dotted line at zero g until the pull-in point (zero 
mechanical full-scale) and then back off from this point to guarantee 
> 20g peak-to-peak mechanical dynamic range (see also Fig. 9). Note 
that at > 20g the mechanical dynamic range greatly exceeds the 
accelerometer full-scale (±1.5g in FF mode and much lower in MD 
mode) and does not limit accelerometer performance. We tested 30 
samples from 5 different wafers in this way and Fig. 7 shows the 
resulting distribution of ∆VB. Fig. 8 shows the distribution of the 
resulting sensitivity in three cases where: 1) EMC is optimally applied 
to each sample (red); 2) a batch level EMC ∆VB and back-off value 
are used, reducing testing to a minimum (blue); 3) no EMC is applied 
(black). Optimal EMC yields the highest mean sensitivity of 784mV/g 
(1.65× increase over no EMC). Batch level EMC incurs a sensitivity 
penalty of 24% at 596mV/g from optimal EMC but remains 25% 
better than no EMC. Finally, to characterize accelerometer reliability 
in case a large acceleration causes pull-in, we also performed a long-
term, repeated pull-in test showing no degradation in accelerometer 
functionality after >10K pull-ins.  

Compared to a MEMS with a typical bias of 4V, the proposed RoC 
achieves 40× gain in sensitivity (optimal EMC) at 775mV/g output 

sensitivity and 0.6% linearity error. It also achieves 121µg/√Hz and 

165µg/√Hz noise floors for FF and MD modes, while consuming 

110nW and 22.4nW, respectively. Dividing the 223nW HVC power 
across the triaxial MEMS units, the RoC and HVC chips consume a 
total of 184nW in FF mode and 96nW in MD mode per axis. Table 1 
compares the accelerometer performance with prior work, showing a 

15.6× FOM (Noise × Power / √BW) improvement over prior art. 
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Fig. 1.  System diagram of a conventional (left) and proposed (right) MEMS accelerometer. Fig. 2.  MEMS signal amplitude with different bias voltages. 
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Fig. 4.  HVC schematic with transistor-level circuit for the capacitive sampler and divider (S&D).  
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Fig. 5.  Measured HVC and RoC transient waveform in MD and FF mode.
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Table. 1. Performance summary and Comparison with prior works.
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Fig. 10.  Measured accelerometer 
linearity within ±1.5g full scale.    

Fig. 12.  Die photo of The RoC (left) and 
HVC (right) chip.    

Fig. 11.  Measured RoC input-
referred noise in MD and FF mode.  
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