
824 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 3, MARCH 2021

A 2.46M Reads/s Seed-Extension Accelerator
for Next-Generation Sequencing Using

a String-Independent PE Array
Zhehong Wang , Graduate Student Member, IEEE, Tianjun Zhang, Daichi Fujiki, Student Member, IEEE,

Arun Subramaniyan , Graduate Student Member, IEEE, Xiao Wu , Member, IEEE, Makoto Yasuda ,
Satoru Miyoshi, Masaru Kawaminami, Reetuparna Das, Member, IEEE,

Satish Narayanasamy, Member, IEEE, and David Blaauw , Fellow, IEEE

Abstract— Advances in DNA-sequencing technology have far
outpaced Moore’s law, imposing significant challenges on the
computationally intensive secondary analysis in the sequencing
pipeline. An accelerator for seed extension, a critical and com-
putationally intensive step in genome sequencing, is proposed.
The accelerator, implementing a string-independent automata,
consists of a triangular array of 25×2 custom-designed processing
elements. It performs 2.46 million reads per second (MRPS),
achieving a 1581× improvement in power efficiency and 165.5×
smaller silicon footprint compared to a system setting with dual-
socket Xeon E5-2697 v3 server processors.

Index Terms— Application-specified integrated circuit (ASIC),
DNA sequencing, Levenshtein edits, seed-extension, string-
independent automata.

I. INTRODUCTION

THE completion of Human Genome Project (HGP) [1] has
triggered immense interest in the application of whole

genome sequencing (WGS), driving the development of next-
generation-sequencing (NGS) technology to reduce the cost.
Since the advance of NGS, the production cost of whole
human genome sequencing has plummeted by 10 000× from
U.S. $10 million to U.S. $1000 in the last decade [2], as in
Fig. 1. This has led to wide use of DNA testing in both
research and clinical diagnosis, creating more personalized

Manuscript received May 30, 2020; revised July 26, 2020; accepted
September 2, 2020. Date of publication September 22, 2020; date of current
version February 24, 2021. This article was approved by Guest Editor Mark
Oude Alink. (Corresponding author: Zhehong Wang.)

Zhehong Wang, Daichi Fujiki, Arun Subramaniyan, Xiao Wu, Reetuparna
Das, Satish Narayanasamy, and David Blaauw are with the Department of
Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109 USA (e-mail: zhehongw@umich.edu).

Tianjun Zhang was with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109 USA. He is
now with the Department of Electrical Engineering and Computer Science,
University of California at Berkeley, Berkeley, CA 94720 USA.

Makoto Yasuda is with Mie Fujitsu Semiconductor Ltd., Kuwana 511-0118,
Japan.

Satoru Miyoshi is with Fujitsu Electronics America, Inc., Sunnyvale,
CA 94085 USA.

Masaru Kawaminami is with Mie Fujitsu Semiconductor Ltd., Yokohama
222-0033, Japan.

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2020.3023822

Fig. 1. Sequencing cost plummeting versus Moore’s law [2].

patient treatments [3]. For example, genetic tests are now
commonly used to predict the effectiveness of specific breast
cancer treatments for patients [4]. Furthermore, identifying
somatic mutations in the human genome sheds light on
the evolution of human cancers, information that can be
leveraged to prevent these cancers in individuals [5]. Like-
wise, large-volume genome testing across diverse samples can
provide a better understanding of the cause of Alzheimer
disease [6]. As technology speeds up WGS, its use will likely
become a standard clinical practice, similar to a blood test,
in the coming decade.

The fast reduction of sequencing cost that benefits the ubiq-
uitous application of WGS stems from the rapid improvement
of the NGS technology. Compared to HGP, which required
15 years to sequence the first human genome, NGS systems
from Illumina can sequence over 45 human genomes in a
single day [7], rendering a 200 000× speedup. As shown
in Fig. 2, a typical DNA sequencing pipeline of current gen-
eration is composed of roughly two main steps. First, a DNA
sequencer, backed by NGS technology, splits the input genome
into billions of reads, which are short DNA copies of the input
genome. Then, the reads are passed into a reference-guided

0018-9200 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:08:15 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: 2.46-MRPS SEED-EXTENSION ACCELERATOR FOR NGS 825

Fig. 2. Reference-guided sequence analysis pipeline with seed extension
highlighted.

secondary analysis, where they are assembled into the original
genome by aligning to a previously sequenced genome, for
example, the one obtained from the HGP. The secondary
analysis is far from a simple string comparison in the sense that
the input genome does not necessarily match the referenced
genome due to DNA mutations, requiring approximate string
alignment. Furthermore, the produced reads are not the exact
copy of the input genome due to the errors introduced by
the DNA sequencer, further complicating the task. Altogether,
for each sequenced human genome, on average, 396 GB
of data must be processed through the complex secondary
analysis [8], which not only poses a significant computational
challenge to current general-purpose computing systems but
also presents them as a bottleneck in the sequencing pipeline,
since the improvement of the DNA sequencer enabled by NGS
technology is far outpacing Moore’s law. At such rate, this
computation bottleneck is projected to dominate the total cost
and processing time of sequencing, becoming a key limiting
factor in the growth of this important medical technology.

Before dealing with the bottleneck, it is worthwhile taking a
close look at the secondary analysis (see Fig. 2). As mentioned
above, a large number of reads, ∼1.5 B, produced by the DNA
sequencer, are passed through the secondary analysis, which
is further divided into three processing steps [9].

1) In the seeding step, a set of possible locations where
the read matches the reference is found by exactly
matching small fragments (seeds) between the read and
the reference.

2) The seed-extension step evaluates these possible match
locations by exploring approximate alignments between

the read and the reference, including possible edits,
to determine the final match location.

3) In the final step, the variant calling step, all the reads
that are aligned to a particular base in the reference are
evaluated to determine whether a mutation occurred at
that location.

Various software packages have been devised to han-
dle these steps since early twenty-first century. Some of
them cover the first two steps, such as BWA-MEM [10],
Bowtie2 [11], and SOAP2 [12], while some focus on the third
step but use the above libraries for the first two steps, like
GATK [13] that incorporates BWA-MEM. There are also other
generic string/sequence analysis libraries such as SeqAn [14]
and SSW [15]. Among them, BWA-MEM has become a
standard for the analysis pipeline and is advocated by GATK
best practice guide.

BWA-MEM, as well as other libraries, adapts two algo-
rithms, FM-Index [16], based on Burrows–Wheeler transform
(BWT) [17], and Smith–Waterman (SW) algorithm [18], for
the two steps, seeding and seed extension, respectively. GPU
implementations [19], [20] of these software packages and
algorithms were released within the software community to
cope with the computation bottleneck due to the increas-
ing amount of data to be processed. However, acceleration
for them gained little interest until recent years, following
the tapering-off of Moore’s law. Field-programmable gate
array (FPGA) solutions were proposed at first for its ver-
satility and better power efficiency compared to GPU sys-
tems, such as [21] for the seeding step and [22] and [23]
for the seed-extension step. With the software stack getting
stable, application-specified integrated circuit (ASIC) becomes
appealing in terms of form factor and power efficiency.
An ASIC designed for the seeding step was also presented
in ISSCC 2018 [24] with 7.84-mm2 die size and 135 mW of
power, achieving ∼1000× and ∼400× improvement in terms
of power efficiency and area efficiency compared to GPU
implementation. However, little or no dedicated acceleration
ASIC has been proposed to address other steps in DNA
sequencing.

In this article, we target at the seed-extension step, which
requires a total of 14 billion alignments for each human
genome, which takes ∼5/∼273 h for 56-thread/single-thread
workload on a server equipped with dual-socket Xeon
E5-2697 v3 processors, using the optimized SeqAn
library [25]. Seed extension aligns two DNA strings of
∼100 bases: the read or query (Q) and the portion of the
reference (R) where the query is expected to align. However,
as mentioned above, there can be mismatches between
R and Q due to sequencing machine errors or mutations
in an individual’s DNA. Hence, approximate alignment is
needed, allowing for the following Levenshtein edits as
shown in Fig. 3: insert (i), delete (d), and substitute (s).
Fig. 4 shows two of many possible alignments for an R and
Q pair, each with an edit distance or score. The goal of seed
extension is to find the alignments with the best score and to
report the score and its associated strings of edits.

We use a 25 × 25 triangular array of processing ele-
ments (PEs) that implements a string-independent automata

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:08:15 UTC from IEEE Xplore. Restrictions apply.

826 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 3, MARCH 2021

Fig. 3. Levenshtein edits.

Fig. 4. Example of alignment.

algorithm for approximate string matching and also performs
match score calculation and generation of the edit string. The
proposed alignment accelerator, implemented in MIFS 55-nm
deeply depleted channel (DDC) CMOS, operates at 670 MHz
and achieves 2.46 million reads per second (MRPS) with
8-mm2 silicon area [26]. Marking, to our knowledge, the first
seed-extension ASIC, it achieves an ∼1581× power efficiency
improvement and 165.5× smaller silicon footprint compared
to deploying SeqAn library on a server with dual-socket Xeon
E5-2697 v3 server processors [25], operating on the same
Genome data set and producing the same output.

The remainder of this article is organized as follows.
Section II introduces the core operation of the proposed
accelerator and compares it with the standard SW algorithm.
Section III describes the detailed implementation of the test
chip. Section IV presents the measurement results of the
design, and finally, Section V concludes this article.

II. SEED-EXTENSION ALGORITHMS

A. SW Algorithm

The canonical solution for the approximate string alignment
problem is a dynamic programming (DP) algorithm called
the SW algorithm [18], which is adapted as a submodule of
BWA-MEM and other software libraries. The basic version of
the algorithm that only identifies the edit distance is illustrated
in Fig. 5.

To align two input strings’ query (Q) and reference (R),
first a DP matrix of size n2 is initialized as all zeros, where n

Fig. 5. Basic SW algorithm.

is the length of the input strings (assuming w.l.o.g. the input
strings are of the same length). Then all the cells identified
by coordinate (i, j), except for the ones in the first row and
column, are filled by an alignment score calculated from the
neighboring cells, according to (1). The weight matrix denoted
by W (ri , q j) in (1) assigns each pair of the input characters in
the input strings a score for match or amismatch. For example,
here, the match score is set to 1 and mismatch score is set to 0.
The penalty in the equation is reserved for the gap penalty
calculation explained further in Section III and is set to 0 for
simplicity in this example. Thus, (1) is a rule of reward and
penalty that accumulates the highest alignment score between
the two input strings up to position (i, j).

In the meantime, each cell also keeps track of which one
of the neighboring cells its score is calculated from. Finally,
from the highest scores, the traces that hold the best scores
are extracted backward. One of the best traces is shown in the
example, which translates to an edit distance that equals 5

E[i, j] = max

⎧⎨⎨
⎨⎩

E[i − 1, j − 1] + W
�
ri , q j

�
E[i, j − 1] − penalty

E[i − 1, j] − penalty.

(1)

The time and space complexity of the SW algorithm is
O(n2), where n is the maximum length of the input string
pair, rendering a string-dependent space complexity and pre-
venting efficient hardware implementation. In practice, one

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:08:15 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: 2.46-MRPS SEED-EXTENSION ACCELERATOR FOR NGS 827

Fig. 6. State diagram of an LA for sequence s = AGC and edit distance
k = 1.

often focuses, dynamically or statically, on a band of fixed
width along the diagonal of the DP matrix [27], leaving out
the corners colored in gray in Fig. 5. The parameter that sets
the width of the band is the maximum target edit distance k.
This banded DP matrix correctly generates output as long as
the edit distance of the input string pair is no greater than k.
This optimization potentially reduces the complexity to O(kn)
since k is much less than n in practice. However, it is still
string dependent.

B. String-Independent Automata

Another solution to sequence matching is based on Leven-
shtein automata (LA). An LA is a finite-state automaton that
is defined on a sequence s and a number k. It can recognize
the set of all sequences that are at most k edit distances
away from the string s. For example, the state diagram of
an LA, defined on string automatic gain control (AGC) and
edit distance k = 1, is shown in Fig. 6. Each state is denoted
by ne, which means that n characters consumed and e edit
distance encountered so far. The state machine starts from state
0◦ and takes the characters of input sequence one by one. Also,
it determines whether the input sequence is at most k = 1 edit
distance away from the sequence s = AGC. Discussion about
the finite-state automaton theory is beyond the scope of this
work, and the reader is referred to [28] for further information.
Although the complexity of LA is O(kn), which is comparable
to SW, it suffers from the fact that it is specific to a given
sequence, as the LA in Fig. 6 is only able to compare strings
to AGC. Thus, LA is rarely utilized in practical sequencing
software libraries.

However, our design adopts a recently proposed
string-independent LA algorithm [25], the algorithm
decouples the state machine from the specific sequence
and has the advantage that varying length strings can be
processed using the same matching hardware as long as the
maximum edit distance remains fixed. Unlike the standard
SW algorithm, where R/Q strings remain static and possible
alignment paths are explored with an array of PEs, the R/Q
strings of arbitrary length are shifted through a state machine
that simultaneously evaluates all possible alignments between
the two strings.

The state machine for this algorithm consists of a 3-D grid
of tiny PEs, represented as circles in Fig. 7, each performing
a comparison of a base pair (BP), while the BPs of the
input R/Q reads are supplied through the two shift registers,

Fig. 7. String alignment example.

rightward and upward, one BP at a time. Starting from the
PE at the bottom left, each PE reactivates itself when the BP
matches, otherwise, it simultaneously activates the neighboring
PEs in a 3-D fashion. The 3-D represent insertion, deletion,
and substitution, thus, each PE is uniquely assigned a state
identifier (i, d, s) corresponding to the edit cost seen so far,
e.g., PE120 corresponds to 1i + 2d + 0s. So, the notations
“PE” and “state” are referred interchangeably in the rest
of this article. In summary, the process propagates from
PE000 diagonally into the 3-D until the input R/Q reads are
shifted out of the registers.

The example in Fig. 7 performs as follows. Initially, in clock
cycle zero (c = 0), only PE000 is activated and compares
the first BP of the R/Q strings (A, A). For clarity, only the
activated PEs are shown in Fig. 7. Since the BP matches,
the PE reactivates itself, indicating a match (m) edit string
so far. In the next clock cycle (c = 1), the R/Q strings are
shifted right/up, and PE000 compares BP (G, T). Since there
is a mismatch, PE000 deactivates itself and instead activates its
three neighbors, PE100, PE010, and PE001. PE100 evaluates

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:08:15 UTC from IEEE Xplore. Restrictions apply.

828 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 3, MARCH 2021

Fig. 8. (a) Overall architecture of test chip and details. (b) Composable structure.

possible alignment of R/Q after 1i and, therefore, uses the
shifted base of R. Since it compares BP (G, G) in c = 2,
it finds a match and reactivates itself for the next cycle.
Similarly, PE010 represents 1d and compares BP (T, T) and
reactivates. PE001 represents 1s and, therefore, looks at the
unshifted bases of its inputs and compares BP (T, G), which
is a mismatch. It, therefore, deactivates itself and activates
PE101, PE011, and PE002.

In c = 3, PE100 and PE101 compare BP (T, C) and
find a mismatch. While they both compare the same R/Q
BP, PE100 represents 1i and PE101 represents 1i and 1s;
hence, their edit distances are not the same, preventing them
from being merged. Similarly, PE010 and PE011 compare
BP (C, G) and find a mismatch. PE002 represents 2s and
compares BP (C, C), which is a match. However, if this
pattern is followed, a full 3-D grid of PEs develops, as shown
by the large black circle in c = 2, which would result in
O(k3) complexity. To reduce the complexity to O(k2), instead,
we use the observation that PE002 evaluates the same BP
position in c = 3 as PE110 will evaluate in the next cycle,
c = 4. In our example, since the R and Q strands are shifted
right and up, respectively, in c = 4, PE110 also compares
BP (C, C) in c = 4. Furthermore, in terms of edit distance,
i = d = s = 1, so the edit distances represented by both
PE002 and PE110 are equal (1i + 1d = 2s). Hence, they
can be merged by replacing PE002 with a wait node that
does nothing but activates PE110 in c = 4 (indicated by
the small black dot in c = 3 and 4). By offloading the
evaluation of PE002 to PE110 in c = 4, a full 3-D structure
is collapsed into a 2-D structure. Hence, in c = 4, PE110
finds a matched BP (C, C) and after reactivating itself, again
finds the final match (C, C) in c = 5 (not shown in Fig. 7),
marking the optimal alignment of two edits. Note that several
other PEs are also active in c = 4. However, they all have
higher edit distances and are suboptimal. Finally, the process

ends after both the input strings are shifted out of the shift
registers.

Therefore, the resulting array has dimension (k, k, 2). Com-
pared to SW, the space complexity of the automata array,
O(k2), is only quadratic in terms of the maximum edit
distance k, making the size of the array much smaller and
string independent. On the other hand, the process starts with
R/Q shifted into the register and finishes with them shifted out,
resulting in an additive linear time complexity O(n+k) instead
of multiplicative time complexity O(kn) in the banded SW.
Thus, the string-independent automata array renders a higher
throughput for a given space.

III. SEED-EXTENSION ACCELERATOR

A. Implemented Architecture

The overall architecture of the accelerator and PE array is
shown in Fig. 8(a). The PEs are extremely simple, consisting
of only six gates, which OR incoming activations and activate
self/neighbors depending on the comparison result. The BP
comparisons are performed at the shift registers and are then
passed diagonally to neighboring PEs since diagonal PEs
use the same comparison result with a one-cycle delay as
explained in Section II. This makes all communication local,
allowing for very high-speed operation. The 25 × 25 triangular
array can be decomposed into three smaller triangular arrays of
12 × 12 [see Fig. 8(b)], enabling a tradeoff between through-
put and maximum edit distance, which is further discussed in
Section IV.

B. Affine Gap Penalty and Score Machine

The standard seed-extension algorithm typically uses a more
sophisticated scoring scheme in addition to edit distance,
based on empirical statistics [29]. This includes the affine gap
penalty used in standard BWA-MEM software [10], complying

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:08:15 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: 2.46-MRPS SEED-EXTENSION ACCELERATOR FOR NGS 829

Fig. 9. Score scheme (top) and delayed merging (bottom).

Fig. 10. Affine gap scoring example.

to the clipping heuristic. Accordingly, the scoring scheme,
as shown in the top of Fig. 9, is adopted in our design. The
penalty scheme favors consecutive insertions and deletions
(penalty −1) over new insertions and deletions (penalty −7),
preventing merging confluence paths, which can occur with
simple edit distance scoring.

According to this rule, two sample alignments (see Fig. 10)
have the same edit distance (five insertions) but with different
scores. Alignment 2 has two gaps separated by the matched
T and T BP in the middle, which imposes a doubled gap
penalty compared to alignment 1 (two −7 penalties versus
one), making the first alignment more desirable. To support
the affine gap penalty, a delayed merge of two converging
paths is required as in Fig. 9. When two paths converge, they
cannot merge immediately based on the current state and input
scores alone since the future score depends on whether the path
opens a new gap. In the example, although the incoming score
from the preceding insertion edge, 8, is lower than the current
score, 9 + 1, the incoming score is not discarded immediately
to merge the two paths. Instead, we latch it until a new gap
opens in the next cycle to decide whether to take the incoming
path and pass the higher score to the following PEs. Score
calculation logic is introduced in addition to the basic PE to
accommodate the aforementioned scheme, which passes the
calculated score from PE to PE along with the state activations
(see Fig. 11).

Fig. 11. PE augmented with score machine and traceback machine.

Fig. 12. Traceback of intact trace (top) and bad trace (bottom).

C. Collision Resolution and Traceback Machine

After the forward process of the input read pair as described
above, the best trace is then shifted backward and collected
by the controller to generate the final output (Fig. 12, top).
This in-place trace back is supported by augmenting the edit
machine with a traceback machine and a score machine as
shown in Fig. 11. The principle is to keep track of the best

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:08:15 UTC from IEEE Xplore. Restrictions apply.

830 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 3, MARCH 2021

Fig. 13. Distribution of Re-run times across data set.

Fig. 14. Process sequence of the proposed accelerator.

score and the incoming state pointer (i, d, s) that activates
current state with that best score and also to count the
matches that the current state meets before activating the next
state. With this information, the traceback machine chains the
winning states one-by-one during the backward propagation to
form a complete winning path. However, during the forward
process, it is possible for the correct pointer to be corrupted
by a later, non-optimal path due to greedy affine gap scoring,
thus breaking the backward trace of the best path. When such a
collision is detected by the controller, the string is reprocessed
up to the point when the broken state occurs and then traced
back, as shown in Fig. 12, bottom. Although this requires
reprocessing the string, in practice, this is rare, less than 1%
of the reads (see Fig. 13), resulting in negligible performance
degradation.

D. Complete Operating Sequence

Fig. 14 shows the complete sequence of operation: after
the full read pair is processed (phase I), each PE passes

Fig. 15. Edit distance across the test data set (left) and the average time
breakdown of the processing (right).

Fig. 16. Test board and die photograph.

the maximum score backward in back-propagation mode, and
the best score is retrieved from PE000 (phase II). The array
controller also counts the number of cycles until the best score
exits the array and then reverses the machine and propagates
the best score into the array again for the same number of
cycles (phase III), at which point the node that matches the
best score self-identifies. During forward processing, each
PE also stores which of the incoming arcs (i, d, s) pass the
best score. In phase IV, starting from the final winning state,
the traceback pointers are connected in backward fashion until
they reach PE000. Finally, in phase V, this backward trace is
collected by shifting it back to PE000, revealing the edit string.

IV. MEASUREMENT

A representative data set, the Illumina Platinum Genomes
ERR194147 data set [30], is used to test our implementation.
The distribution of edit distance of the reads in the data set
is shown in Fig. 15, left. From the distribution, 99.9967%
of the reads are of edit distance no greater than 25, so with
k = 25 for the PE array, 99.9967% of the reads are correctly
processed. Since the size of the array is quadratic in maximum
edit distance supported, 25 is a good tradeoff point between
accuracy and silicon area. For the decomposed mode, where
k = 12, 99.7907% of the reads are correctly covered. A time
breakdown of the processing on the data set (Fig. 15, right)
shows that 70% of the processing time is devoted to forward
process and 30% is taken by the traceback phase.

Implemented in Mie Fujitsu 55-nm DDC technology,
the test chip achieves 670-MHz core clock frequency at
0.9-V VDD and consumes 508 mW of power. Fig. 16 shows

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:08:15 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: 2.46-MRPS SEED-EXTENSION ACCELERATOR FOR NGS 831

Fig. 17. VDD scaling and body bias scaling plot.

Fig. 18. Frequency distribution across test chips.

the test board and die photograph. As shown in the VDD
scaling plot (see Fig. 17), the frequency of the test design
can scale up to 834 MHz with 1.2-V VDD and 704 MHz
with 0.2-V forward body bias at 0.9-V VDD. Fig. 18 gives a
frequency distribution across six different test chips.

To compare this work with the state-of-the-art, BWA-MEM
is chosen as the ground truth to compare the output due
to its popularity. However, because BWA-MEM also incor-
porates the seeding step, the SeqAn library is implemented
to study the performance of this work independent of the
seeding step. The measured throughput is 2.46 MRPS for the

TABLE I

COMPARISON WITH OTHER WORK

test data set, and the results are identical to those obtained
with BWA-MEM under the same settings of maximum edit
distance k and scoring scheme. This marks a performance
improvement of ∼3×/∼170× over SeqAn library deployed
as 56-thread/single-thread workload on a server with dual-
socket Xeon E5-2697 v3 processors under the same con-
figuration [14], [25] and ∼32 000× over SSW library on a
2-GHz AMD processor [15]. It also achieves improvement
of ∼10× over a GPU implementation [20] or an FPGA
implementation [22], all of which have a much larger silicon
footprint, yielding a performance improvement normalized by
area and technology of over 1000×. The power efficiency
is 4.24 MRPS/W, also marking an over 1000× improvement
over SeqAn on the CPU [25] and 70× improvement on the
FPGA [22]. Table I summarizes the above comparison.

V. CONCLUSION

An accelerator for seed extension is presented. The acceler-
ator consists of a triangular array of 25 × 25 custom-designed
PEs, implementing a string-independent automata. Marking
the first silicon implementation of the string-independent
matching algorithm, it achieves 2.46-MRPS throughput and
4.24 MRPS/W power efficiency, providing 1581× power
efficiency and over 1000× area efficiency improvement com-
pared to deploying SeqAn library on dual-socket Xeon E5-
2697 v3 server processors, while maintaining the same output
as standard BWA-MEM library under the same configuration.

REFERENCES

[1] E. S. Lander et al., “Initial sequencing and analysis of the human
genome,” Nature, vol. 409, no. 6822, pp. 860–921, Feb. 2001, doi: 10.
1038/35057062.

[2] K. A. Wetterstrand. DNA Sequencing Costs: Data from the NHGRI
Genome Sequencing Program (GSP). Accessed: May 20, 2020. [Online].
Available: https//www.genome.gov/sequencingcostsdata

[3] A. Grada and K. Weinbrecht, “Next-generation sequencing: Method-
ology and application,” J. Investigative Dermatology, vol. 133, no. 8,
pp. 1–4, Aug. 2013, doi: 10.1038/jid.2013.248.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:08:15 UTC from IEEE Xplore. Restrictions apply.

832 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 3, MARCH 2021

[4] M. A. Hamburg and F. S. Collins, “The path to personalized medicine,”
New England J. Med., vol. 2010, no. 363, pp. 301–304, 2010.

[5] E. D. Pleasance et al., “A comprehensive catalogue of somatic mutations
from a human cancer genome,” Nature, vol. 463, no. 7278, pp. 191–196,
2010.

[6] A. Lacour et al., “Genome-wide significant risk factors for Alzheimer’s
disease: Role in progression to dementia due to Alzheimer’s disease
among subjects with mild cognitive impairment,” Mol. Psychiatry,
vol. 22, no. 1, pp. 153–160, Jan. 2017, doi: 10.1038/mp.2016.18.

[7] An Introduction to Next-Generation Sequencing Technology, Illumina,
Inc. Accessed: Jun. 15, 2020. [Online]. Available: https://www.illumina.
com/content/dam/illumina-marketing/documents/products/illumina_
sequencing_in troduction.pdf

[8] Z. D. Stephens et al., “Big data: Astronomical or genomical,” PLoS
Biol., vol. 13, no. 7, Art. no. e1002195, 2015.

[9] G. A. Auwera et al., “From FastQ data to high-confidence variant calls:
The genome analysis toolkit best practices pipeline,” Current Protocols
Bioinf., vol. 43, no. 1, p. 11, Oct. 2013, doi: 10.1002/0471250953.
bi1110s43.

[10] H. Li and R. Durbin, “Fast and accurate long-read alignment with
burrows-wheeler transform,” Bioinformatics, vol. 26, no. 5, pp. 589–595,
2010, doi: 10.1093/bioinformatics/btp698.

[11] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with
bowtie 2,” Nature Methods, vol. 9, no. 4, pp. 357–359, Apr. 2012, doi:
10.1038/nmeth.1923.

[12] R. Li et al., “SOAP2: An improved ultrafast tool for short read
alignment,” Bioinformatics, vol. 25, no. 15, pp. 1966–1967, Aug. 2009,
doi: 10.1093/bioinformatics/btp336.

[13] A. McKenna et al., “The genome analysis toolkit: A MapReduce frame-
work for analyzing next-generation DNA sequencing data,” Genome
Res., vol. 20, no. 9, pp. 1297–1303, Sep. 2010, doi: 10.1101/gr.
107524.110.

[14] K. Reinert et al., “The SeqAn C++ template library for efficient sequence
analysis: A resource for programmers,” J. Biotechnol., vol. 261,
pp. 157–168, Nov. 2017, doi: 10.1016/j.jbiotec.2017.07.017.

[15] M. Zhao, W.-P. Lee, E. P. Garrison, and G. T. Marth, “SSW library: An
SIMD smith-waterman C/C++ library for use in genomic applications,”
PLoS ONE, vol. 8, no. 12, Dec. 2013, Art. no. e82138, doi: 10.1371/
journal.pone.0082138.

[16] P. Ferragina and G. Manzini, “Opportunistic data structures with applica-
tions,” in Proc. 41st Annu. Symp. Found. Comput. Sci., Redondo Beach,
CA, USA, Nov. 2000, pp. 390–398, doi: 10.1109/SFCS.2000.892127.

[17] M. Burrows and D. J. Wheeler, “A block sorting lossless data
compression algorithm,” Digit. Equip. Corp., Maynard, MA, USA,
Tech. Rep. 124, 1994.

[18] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” J. Mol. Biol., vol. 147, no. 1, pp. 195–197, Mar. 1981.

[19] Y. Liu and B. Schmidt, “CUSHAW2-GPU: Empowering faster gapped
short-read alignment using GPU computing,” IEEE Des. Test. IEEE Des.
Test. Comput., vol. 31, no. 1, pp. 31–39, Feb. 2014, doi: 10.1109/MDAT.
2013.2284198.

[20] R. Wilton, T. Budavari, B. Langmead, S. J. Wheelan, S. L. Salzberg,
and A. S. Szalay, “Arioc: High-throughput read alignment with GPU-
accelerated exploration of the seed-and-extend search space,” PeerJ,
vol. 3, p. e808, Mar. 2015, doi: 10.7717/peerj.808.

[21] H. M. Waidyasooriya and M. Hariyama, “Hardware-acceleration of
short-read alignment based on the burrows-wheeler transform,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 5, pp. 1358–1372, May 2016,
doi: 10.1109/TPDS.2015.2444376.

[22] J. Arram et al., “Reconfigurable acceleration of short read mapping,”
in Proc. IEEE 21st Annu. Int. Symp. Field-Program. Custom Comput.
Mach., Seattle, WA, USA, Apr. 2013, pp. 210–217, doi: 10.1109/FCCM.
2013.57.

[23] E. J. Houtgast, V.-M. Sima, K. Bertels, and Z. Al-Ars, “An FPGA-based
systolic array to accelerate the BWA-MEM genomic mapping algo-
rithm,” in Proc. Int. Conf. Embedded Comput. Syst., Archit., Modeling,
Simulation (SAMOS), Jul. 2015, pp. 221–227, doi: 10.1109/SAMOS.
2015.7363679.

[24] Y.-C. Wu, J.-H. Hung, and C.-H. Yang, “14.8 A 135 mW fully
integrated data processor for next-generation sequencing,” in IEEE
ISSCC Dig. Tech. Papers, Feb. 2017, pp. 252–253, doi: 10.1109/ISSCC.
2017.7870356.

[25] D. Fujiki et al., “GenAx: A genome sequencing accelerator,” in Proc.
ACM/IEEE 45th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2018,
pp. 69–82, doi: 10.1109/ISCA.2018.00017.

[26] Z. Wang et al., “A 2.46M reads/s genome sequencing accelerator using
a 625 processing-element array,” in Proc. IEEE Custom Integr. Circuits
Conf. (CICC), Boston, MA, USA, Mar. 2020, pp. 1–4, doi: 10.1109/
CICC48029.2020.9075900.

[27] D. Okada, F. Ino, and K. Hagihara, “Accelerating the smith-waterman
algorithm with interpair pruning and band optimization for the all-pairs
comparison of base sequences,” BMC Bioinf., vol. 16, no. 1, p. 321, doi:
10.1186/s12859-015-0744-4.

[28] K. U. Schulz and S. Mihov, “Fast string correction with levenshtein
automata,” Int. J. Document Anal. Recognit., vol. 5, no. 1, pp. 67–85,
Nov. 2002, doi: 10.1007/s10032-002-0082-8.

[29] O. Gotoh, “Optimal sequence alignment allowing for long gaps,” Bull.
Math. Biol., vol. 52, no. 3, pp. 359–373, May 1990.

[30] M. A. Eberle et al., “A reference data set of 5.4 million phased
human variants validated by genetic inheritance from sequencing a
three-generation 17-member pedigree,” Genome Res., vol. 27, no. 1,
pp. 157–164, Jan. 2017, doi: 10.1101/gr.210500.116.

Zhehong Wang (Graduate Student Member,
IEEE) received the B.E. degree in electronics and
information engineering from Zhejiang University,
Hangzhou, China, in 2016. He is currently pursuing
the Ph.D. degree in electrical and computer
engineering with the University of Michigan, Ann
Arbor, MI, USA.

His current research interests include application-
oriented application-specified integrated circuit
(ASIC), such as DNA sequencing, machine
learning, fully homomorphic encryption, and
emerging memory design.

Tianjun Zhang received the B.S. degree in
electrical engineering from the University of
Michigan, Ann Arbor, MI, USA, and Shanghai
Jiao Tong University, Shanghai, China, in 2018.
He is currently pursuing the Ph.D. degree in
computer science with the University of California
at Berkeley, Berkeley, CA, USA.

His current research interests include
software–hardware co-design of deep neural
networks and efficient training/inference architecture
for machine learning.

Daichi Fujiki (Student Member, IEEE) received the
B.E. degree from Keio University, Tokyo, Japan,
in 2016 and the M.S.Eng. degree from the Univer-
sity of Michigan, Ann Arbor, MI, USA, in 2017.
He is currently pursuing the Ph.D. degree in com-
puter science and engineering with the University of
Michigan, Ann Arbor, MI, USA.

He is advised by Prof. R. Das. He is a member
of the Mbits Research Group, Computer Engineer-
ing Laboratory (CELAB), University of Michigan,
which develops in situ compute memory architec-

tures and custom acceleration hardware for bioinformatics workloads.

Arun Subramaniyan (Graduate Student Member,
IEEE) is currently pursuing the Ph.D. degree with
the Department of Computer Science and Engineer-
ing, University of Michigan, Ann Arbor, MI, USA.

His research interests include in-memory comput-
ing and hardware acceleration for genomics.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:08:15 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: 2.46-MRPS SEED-EXTENSION ACCELERATOR FOR NGS 833

Xiao Wu (Member, IEEE) received the B.S. degree
in electrical engineering from the University of
Michigan, Ann Arbor, MI, USA, the B.S. degree
in computer science from Shanghai Jiaotong Uni-
versity, Shanghai, China, in 2014, and the Ph.D.
degree in electrical and computer engineering from
the University of Michigan in 2019.

Her research includes small sensor node design
and high-performance hardware accelerator for
genome sequencing.

Makoto Yasuda received the B.S. degree in elec-
tronic physical engineering from Hiroshima Univer-
sity, Hiroshima, Japan, in 1992.

He joined Fujitsu Ltd., Kawasaki, Japan, in 1992,
where he was a Process Integration Engineer.
He is currently engaged in the development of
deeply depleted channel (DDC) technology with Mie
Fujitsu Semiconductor Ltd., Kuwana, Japan.

Satoru Miyoshi received the B.S. degree in material
science from Yokohama National University, Yoko-
hama, Japan, in 1988.

In 1988, he joined Fujitsu Ltd., Kawasaki, Japan,
as a Process Integration Engineer. Since 2014,
he has been the Technology Marketing Director with
Fujitsu Electronics America, Inc., Sunnyvale, CA,
USA, where he has been involved in the develop-
ment of deeply depleted channel technology.

Masaru Kawaminami received the B.S. and
M.S. degrees in science and engineering (applied
chemistry) from Waseda University, Tokyo, Japan,
in 2002.

He was a Technical Marketing Specialist with the
Business Development Division, Fujitsu Electronics
America, Inc., Sunnyvale, CA, USA, from 2015 to
2019. He is currently a Customer Support Engineer
with the Technology Service Division, Mie Fujitsu
Semiconductor Ltd., Yokohama, Japan, for expand-
ing foundry businesses to overseas customers.

Reetuparna Das (Member, IEEE) received the
Ph.D. degree in computer science and engineering
from Pennsylvania State University, University Park,
PA, USA, in 2010.

She was a Research Scientist with the Intel Labs,
Santa Clara, CA, USA, and the Researcher-In-
Residence with the Center for Future Architectures
Research, Ann Arbor, MI, USA. She is currently an
Assistant Professor with the University of Michigan,
Ann Arbor. Some of her recent projects include
in-memory architectures, custom computing for pre-

cision health and AI, fine-grain heterogeneous core architectures for mobile
systems, and low-power scalable interconnects for kilo-core processors. She
has authored over 45 articles and holds seven patents.

Prof. Das received two IEEE top picks awards, the NSF CAREER Award,
the CRA-W’s Borg Early Career Award, the Intel Outstanding Researcher
Award, and the Sloan Foundation Fellowship. She has been inducted into
IEEE/ACM MICRO and ISCA Hall of Fame. She served on over 30 technical
program committees and as the Program Co-Chair for MICRO-52.

Satish Narayanasamy (Member, IEEE) received
the B.E. degree in computer science and engineering
from Anna University, Chennai, India, in 2001 and
the M.S. and Ph.D. degrees in computer science
from the University of California at San Diego, San
Diego, CA, USA, in 2005 and 2007, respectively.

He has been an Associate Professor with the Elec-
trical Engineering and Computer Science (EECS)
Department, University of Michigan, Ann Arbor,
MI, USA, since 2014. He is also the President and
the Co-Founder of Sequal Inc., Ann Arbor. His cur-

rent interests include concurrent systems, specialized accelerator architectures
and systems for mobile and web applications, big data for program analysis
and MOOC tools, and system reliability.

David Blaauw (Fellow, IEEE) received the B.S.
degree in physics and computer science from Duke
University, Durham, NC, USA, in 1986 and the
Ph.D. degree in computer science from the Univer-
sity of Illinois at Urbana–Champaign, Urbana and
Champaign, IL, USA, in 1991.

Until August 2001, he worked with Motorola, Inc.,
Austin, TX, USA, where he was the Manager of
the High Performance Design Technology Group.
Since August 2001, he has been a Faculty Member
with the University of Michigan, Ann Arbor, MI,

USA, where he is currently the Kensall D. Wise Collegiate Professor of
electrical engineering and computer science (EECS) and also the Director of
the Michigan Integrated Circuits Laboratory. He has authored over 600 articles
and holds 65 patents. He has performed extensive research in ultralow-power
computing using subthreshold operation and analog circuits for millimeter
sensor systems, which was selected by the MIT Technology Review as one
of the year’s most significant innovations. For high-end servers, his research
group introduced so-called near-threshold computing, which has become a
common concept in semiconductor design. Most recently, he has pursued
research in cognitive computing using analog, in-memory neural networks
for edge devices, and genomics acceleration for precision health.

Dr. Blaauw was the General Chair of the IEEE International Sympo-
sium on Low Power and the Technical Program Chair of the ACM/IEEE
Design Automation Conference and serves on the IEEE International Solid-
State Circuits Conference’s Technical Program Committee. He received the
2016 SIA-SRC Faculty Award for lifetime research contributions to the U.S.
semiconductor industry, the Motorola Innovation Award, and numerous best
paper awards.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:08:15 UTC from IEEE Xplore. Restrictions apply.

