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   Abstract We present a highly flexible micro-robotic vision SoC 
featuring a hybrid Processing Element (PE) for efficient pro-
cessing of both Convolutional Neural Network (CNN) and non-
CNN vision tasks with 2MB embedded MRAM for retentive fully-
on-chip weight storage. Fabricated in 22nm, the design achieves 
0.22nJ/pix for Harris corner detection (a non-CNN vision task) 
and 3.5TOPS/W (INT16) for CNN, a 60% efficiency improve-
ment over state-of-the-art NVM-based NN ASICs. 

Introduction: Autonomous micro-robots rely on navigation 
systems (Fig. 1) that are typically based on cameras and inertial 
sensors. This involves heavy vision workloads [1] such as feature 
detection/tracking and depth estimation. On CPUs and GPUs, 
these tasks consume > 30W [1], greatly exceeding actuation power 
of micro-robots [2]. To achieve low-power robotic vision, prior 
work [3][4][5] targets each vision task with a dedicated accelera-
tor, making them unable to adapt to algorithm changes and requir-
ing a substantial collection of accelerators at the cost of high de-
sign effort. In addition, with the rise of CNN-based vision [6], it 
is now essential that vision processors execute both non-CNN and 
CNN vision tasks efficiently. 

Targeting efficiency of four major vision tasks in Fig. 1 that are 
sequentially executed in a navigational vision pipeline, we pro-
pose a novel hybrid PE in which non-CNN vision tasks achieve 
high efficiency by using a 2D-mapping architecture [7] while 
CNN is executed in an efficient output-channel-parallel systolic 
manner [8]. Combining both processing domains into a single PE 
array future-proofs the architecture, facilitating next generation 
CNN-heavy vision algorithms, while saving 40% area and leakage 
with <0.5% power overhead and no throughput loss, compared to 
two separate array implementations. To further improve energy 
efficiency, the design implements a number of key features: 1) 
2MB MRAM for non-volatile fully-on-chip weight storage; 2) A 
unified Image-Activation Memory (IAMEM) with block-swap-
ping-based input/output image buffering that reduces buffer foot-
print by 50% and eliminates data copy for multi-frame buffering; 
3) A combination of weight buffering and CNN loop ordering that 
reduces measured MRAM read power by 88.4%. 

Chip Architecture: Fig. 2 shows the top-level architecture 
consisting of a programmable Neural Vision Processing Unit 
(NVPU) that accelerates vision tasks, 2MB embedded MRAM, 
936kB IAMEM, a Cortex-M33 sub-system with 256kB I/D 
memory, a SPI slave, and an input image interface. 

Unified Image-Activation Memory: Conventionally, an im-
age processor uses ping-pong buffers for image input/output and 
separate scratchpads for intermediate results. However, in vision 
tasks such as feature tracking, multiple frames need to be buffered 
and accessible to computation. With ping-pong buffering, the first 
frames need to be loaded and then copied elsewhere to free up 
buffers for subsequent frames, resulting in copying overhead. In-
stead, we propose an architecture with unified buffers and scratch-
pads. It consists of six physical memory blocks that can be 
swapped (through MUX-based re-routing) to any of six different 
logical blocks (Fig. 2, top right). Logical block 0 is dedicated to 
input and block 5 to output while the other four are accessible to 
the NVPU. In the case of 2-frame buffering, each frame can be 
loaded in-turn through logical block 0 and then swapped to logical 
blocks 1 and 3, after which both are available for processing. This 
flexible scheme avoids data copying, allows memory reuse, and 
reduces overall buffer size by 50% in our design. 

Neural Vision Processing Unit: The bottom of Fig. 2 details 
the NVPU architecture, which centers around a hybrid PE array 
tightly coupled with a custom RISC core, making it instruction-
programmable. The PE array combines two modes: 2D-mapping 
-based Image Processing Mode (IPM) and Systolic CNN Mode 
(SCM). In IPM (Fig. 3), image blocks are loaded/stored row-by-
row to/from the PE array, where each PE maps one input/output 
pixel. IPM is optimized for efficient image filtering or other pixel-
block-based kernels, where output pixels stay stationary in the PE 
while input pixels are shifted around in a zig-zag fashion. Each 

cycle, one weight from the 2D filter is broadcast to all PEs and 
multiplied with input pixels, with the results accumulated in out-
put pixels. Unlike IPM, in SCM (Fig. 4 top) each PE row maps 
weights of different output channels, while it still shares similar 
IAMEM access and remains output stationary. Input activations 
and weights are unrolled across input channels and kernel sizes 
and streamed in systolic (non-zig-zag) fashion to the array. In con-
trast to the image LD/ST latency in IPM, SCM convolution is fully 
pipelined and incurs no memory latency once set up. 

Hybrid Systolic 2D-Mapping PE: Fig. 5 shows the combined 
2D-Mapping and systolic convolution PE. By merging the Shift-
Reg with ActOut-Reg and reusing MAC and Acc-Reg, area and 
leakage are reduced by 40% with <0.5% power overhead com-
pared to a design using two separate PE arrays. To enhance flexi-
bility, the MAC unit is extended to serve as an ALU with program-
mable functions (MAC/add/mult/shift/cmp, etc.) for pixel-wise 
operations. A Local Register File (LRF) enables intermediate re-
sults to remain in the PE array for fused computation, which sig-
nificantly reduces IAMEM access and footprint. For example, 
Harris corner detection requires multiple filters and pixel-wise op-
erations; for this task IAMEM accesses and footprint can be re-
duced by at least 14× and 3×, respectively, using fused computa-
tion. The mask register (Msk-Reg) enables SIMT-style masked 
image processing, where masked output pixels are not processed. 
For a VGA image with 60 tracked features and feature masking 
radius of 30 pixels, 43% of pixels can be masked for new feature 
detection on average. Gating their ALUs, LRFs, and Acc-Regs  
yields 17% power reduction for Harris corner detection at 0.52V. 

MRAM Read Activity Minimization: The bottom of Fig. 4 
depicts the proposed MRAM-read minimization technique to re-
duce MRAM power. To keep PEs busy in SCM, different weights 
need to be streamed in every cycle, potentially leading to 100% 
MRAM read activity and correspondingly high MRAM power, es-
pecially in the MRAM’s I/O supply domain (1.6V ~ 3.6V). Ping-
pong weight buffers (Fig. 4, top left) allow weights for a set of 16 
output channels to be reused. By moving the output channel to the 
outer loop, weights can also be reused for the input feature map 
and MRAM read activity is minimized. For instance, for a 
96×96×16 to 48×48×64 convolution (3×3 kernel), MRAM read 
activity is reduced by ~95×. 

Measurements: The proposed chip was fabricated in 22nm and 
measured at room temperature. In non-NN vision tasks, the design 
achieves 0.22nJ/pix for Harris corner, 0.22nJ/pix for sparse LK 
flow, and 0.055nJ/pix for stereo local matching. The chip exhibits 
207GOPS INT16 peak image processing performance. Fig. 8 
shows a demonstration of the chip detecting Harris corners from 
an image in the EuRoC dataset. Shown in Fig. 6 (top left), the pro-
posed read activity minimization technique reduces MRAM read 
power by 88.4% at 0.8V. Fig. 6 (top right) shows the voltage-fre-
quency-efficiency scaling of SCM measured by iteratively run-
ning 48×48×32 to 24×24×32 (3×3 kernel) CONV-BN layers. Our 
design achieves peak 146GOPS INT16 (511GOPS INT8 after nor-
malization) CNN performance. It achieves peak energy efficiency 
of 3.5TOPS/W INT16 (12.1TOPS/W INT8 after normalization) at 
0.5V, 16MHz. Fig. 6 (bottom) shows the performance, energy ef-
ficiency, and demonstration of mapping DroNet [6] fully on-chip 
for learning-based collision avoidance. Fig. 7 shows the perfor-
mance and energy efficiency of mapping a complete navigational 
vision pipeline on chip with the four major vision tasks executed 
sequentially. Fig. 10 gives a chip summary and detailed compari-
son with state-of-the-art designs across four major robotic vision 
tasks. Despite its high flexibility, our chip exhibits better or similar 
energy efficiency when compared to accelerators for non-NN 
tasks. For NN inference, our design achieves a 60% inference ef-
ficiency improvement over a state-of-the-art NVM-based NN 
ASIC (with INT8 MACs), even when performing INT16 MACs. 
After normalization to INT8, our chip achieves 5.5× efficiency, 
showing the potential advantage of the proposed hybrid architec-
ture. Fig. 9 provides the die photo with floorplan.
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Fig. 1. Four major vision tasks for micro-robot navigation.

Fig. 2. Top-level architecture of the proposed SoC design.

Fig. 3. 2D-Mapping-based IPM architecture and data flow.

Fig. 4. Top: SCM architecture; Bottom: MRAM read activity minimization.

Fig. 5. Proposed hybrid systolic 2D-mapping PE architecture.

Fig. 6. Top: MRAM power reduction through read activity minimization 
and voltage-frequency-efficiency scaling for CONV-BN layer (80% 
weight sparsity, 50% activation sparsity); Bottom: performance, efficiency 
and demonstration of mapping DroNet [6] fully on chip. Fig. 10. Chip summary and comparison with state-of-the-art.

Fig. 8. Demo of feature detection. Fig. 9. Die photo with floorplan.
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Fig. 7. Performance for a complete micro-robot navigation vision pipeline.
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