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As a result, nW XOs typically exhibit a higher Allan deviation
floor, which indicates degraded long-term frequency stability.

Shrivastava et al. [6] introduce a design with an
inverter-based Pierce structure with a duty-cycling scheme for
the driver. Because the inverting amplifier operates in the
subthreshold region with a VDD of 0.3 V, the bias current
is sensitive to PVT variations, and thus this design requires
calibration. An ultralow-voltage 32-kHz XO design operating
with only 60 mV was presented in [4]. It uses a Schmitt
trigger as the inverting amplifier to compensate for the crystal
loss. Although it shows that a Schmitt trigger has much less
variability in process corners than an inverter, this design has a
limited VDD range of 0.06–0.1 V and was only tested from 5 ◦C
to 62 ◦C due to the measurement setup. Siniscalchi et al. [4]
and Shrivastava et al. [6] using a conventional Piece structure
and inverting amplifiers demonstrate the tradeoff between
power and robustness to PVT variations. To avoid this tradeoff
and sustain the oscillation despite PVT variations, an XO
with a pulsed driver was proposed in [1] and [8]. The driver
injects energy into the crystals with pulses only at the peak
and valley of the crystal oscillation. During other parts of
the oscillation period, the driver is turned off. With this
configuration, the driver can be sized properly with margin
for PVT variations while avoiding substantial static power
consumption. By injecting energy at the peak and valley of
the crystal oscillation, the pulse driver also achieves high
efficiency of energy injection, thanks to a small voltage drop
from VDD or ground to crystal during the injections.

One disadvantage of this pulsed driver is that it requires
timing control for the pulsed injections to ensure that they
happen close to the peak and valley of the crystal oscillation
in the presence of PVT variation. Timing control using a
DLL [1] or a phase-locking loop (PLL) [5] has been proposed.
However, within a nW power budget, even detecting the phase
of a sinusoidal crystal oscillation is not trivial. These timing
control loops introduce large power and area overhead. In [7],
an XO design with a pulsed driver and open-loop timing
control was introduced. The injection timing relies on the
intrinsic delay of the proposed low-power clock slicer that
converts the sinusoidal crystal oscillation into a rail-to-rail
output clock. This configuration simplifies the architecture and
reduces power at the cost of uncontrolled injection timing with
PVT variation. Because the pulsed driver only injects energy
at the peak and valley of the crystal oscillation, the pulsed
control signals typically require bootstrapping to turn on the
driver strongly. These bootstrapping circuits also contribute to
switching power overhead.

Fig. 2 presents the power consumption and Allan devi-
ation floor of the nW XOs published from 2012 to 2020.
Yoon et al. [8] from ISSCC 2012 presented the first 32-kHz
XO that consumed less than 10 nW; now the lowest power
consumption for an XO is close to 0.5 nW. Considering the
three challenges discussed at the beginning of this article,
we propose an XO design that consumes only 0.51 nW [10].
It can operate from −25 ◦C to 125 ◦C, and the measured Allan
deviation floor is 2 ppb at 0.45 V power supply and 25 ◦C.

The proposed XO design uses frequency-divided
(4 kHz), high energy-to-noise-ratio (ENR) injection

Fig. 2. Power and Allan deviation floor of state-of-the-art nW XOs.

oscillation (HERO). It injects high energy in short pulses at
4 kHz around the peak and valley of the crystal oscillation.
By allowing the crystal to run freely for a longer period
of time between injections, HERO achieves a 2-ppb Allan
deviation floor, which is the lowest reported among the state-
of-the-art nW XOs. The design with the second-best reported
Allan deviation floor [4] consumes 2.26 nW. Furthermore,
the less frequent injections in HERO significantly reduce
the injection overhead, enabling the lowest reported power
consumption (0.51 nW) to the best of the authors’ knowledge.
An integrated phase extraction and delay circuit achieves
accurate injection alignment, resulting in stable operation
from −25 ◦C to 125 ◦C, the widest reported temperature
range among nW XOs.

This article is organized as follows. Section II discusses
the design considerations required to achieve ultralow power
including the choice of crystal and resonance mode. Section III
introduces the proposed architecture and circuit implementa-
tions. The measurement results including power consumption,
frequency variations in PVT, Allan deviation, and reliability
tests are presented in Section IV. Finally, Section V summa-
rizes the conclusions and discusses future work.

II. PROPOSED LOW-POWER TECHNIQUES

In this section, we analyze which elements determine the
lowest possible achievable power consumption of a 32-kHz
XO. In other words, if we have an ideal circuit driving a real
crystal, what are the fundamental requirements or functionality
of this circuit to provide a 32-kHz output? First, it must extract
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Fig. 3. Resonance modes of crystals: “parallel resonance” and “series
resonance”; waveforms at V1 and V2 in these two modes and oscillation
amplitudes across the crystal, VOSC.

frequency and phase from the crystal waveform; second,
it must inject energy into the crystal to compensate for the
loss in the crystal; and third, it requires timing control so
energy is injected at the right time. These requirements lead
to the corresponding fundamental power consumptions: power
for extraction, power for crystal loss, and power for timing.
For example, in a conventional Pierce XO with an inverter, the
inverter and the load capacitances must be carefully sized to
meet the three requirements above. The inverter can convert
the sinusoidal waveform from the crystal into the square
wave clock output at the cost of short-circuit current. With
resistor and load capacitors, the inverter works as a continuous
amplifier that must satisfy the gain and phase to sustain
the oscillation of the crystal [11]. However, even with an
ideal circuit that can perfectly accomplish phase extraction,
energy injection, and timing control, energy is still required to
compensate for the loss in the crystal. Hence, the loss in the
crystal determines the power limit.

A. Choice of Crystal

The parameters of a crystal can determine the crystal loss.
Typically, we use an RLC circuit to model the crystal as shown
in Fig. 3. For simplicity, dc-biasing resistors are not shown.
Because it has non-zero motional resistance RS, the crystal
has a quality factor Q, the ratio between stored and dissipated
energy in one cycle [12], on the order of tens of thousands

Q = 2π
EStored

ELoss,T
= 2π

0.5LS I 2
RS

0.5I 2
RS

RSTXO
= ωOSC LS

RS
. (1)

RS and Q can determine both the power and noise perfor-
mance of an XO. A higher Q means a smaller phase error of
oscillation in the presence of a disturbance. When we choose a
32-kHz crystal for a nW XO, a crystal with a high Q is desired
for low-loss and good noise performance. As we will discuss
in Section II-B, for an XO operating in “parallel resonance,” a
crystal with a low RS is preferred for less crystal loss. For an
XO operating in “series resonance,” a crystal with a higher RS

is preferred for less crystal loss. Hence, the power and noise
performance also depend on how the crystal is resonated.

Fig. 4. Simplified crystal model in parallel resonance for calculation of
crystal loss.

B. Resonance Mode

In “parallel resonance,” inductor LS resonates with CS in
series with load capacitance CL, which is a combination of
CO and CP. There is a phase shift of 180◦ across the crystal.
One important feature of the parallel resonance mode is that
if the driver is turned off, the crystal will stay in parallel
resonance and continue to oscillate as the amplitude decays.
In “series resonance,” the inductor resonates with CS only.
It requires a driver to maintain zero phase shift across the
crystal. In contrast to parallel resonance, the driver must
always be on to maintain series resonance. If the driver is
turned off, the inductor current would instantaneously cause
phase difference between V1 and V2 by pulling up one of V1

and V2 while pulling down the other one. So, once the driver
for series resonance is turned off, the crystal would switch to
parallel resonance. Fig. 3 shows the voltage waveform at V1

and V2 in these two modes. The oscillation amplitude across
the crystal is VOSC. Assuming a certain VOSC, we can calculate
the crystal loss in these two modes.

In parallel resonance, because V1 and V2 are 180◦ out of
phase to each other, the crystal model can be simplified as
shown in Fig. 4. CL is the total load capacitance, and CL =
CO + 0.5CP. Because CL and CS form a capacitive voltage
divider, and the oscillation amplitude across CL is defined as
VOSC as shown in Fig. 3, the oscillation amplitude across RS

and LS can be obtained as

VOSC,INT = VOSC · CS + CL

CS
. (2)

Then, the crystal loss in parallel resonance can be obtained
by calculating the power dissipated on RS [1]

PLoss,PR ≈ 0.5RS · (VOSC · CL · ωS)
2 (3)

where ωS is the resonance frequency of LS and CS,
1/

√
(LSCS). Hence, the crystal loss in parallel resonance

is proportional to RS and a quadratic function of both
VOSC and CL.

In series resonance, because LS resonates with CS, VOSC is
across RS, which makes the crystal loss a quadratic function
of VOSC and inversely proportional to RS:

PLoss,SR = PRS = V 2
OSC,RS

2RS
= V 2

OSC

2RS
. (4)

From (3), to reduce the crystal loss in parallel resonance,
we should choose a crystal with a small RS and reduce the
oscillation amplitude, VOSC, and load capacitance, CL. For
example, for a 32-kHz crystal model with RS = 50 k�,
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Fig. 5. Circuit injects both energy and noise into the crystal.

Fig. 6. Proposed high ENR injection compared with continuous injection
and pulsed injection.

LS = 17 kH, CS = 1.39 fF, CO = 1.35 pF, and Q = 70 000,
assuming 100-mV VOSC and 1-pF CP (all the calculations in
Section II use this crystal model), the crystal loss in parallel
resonance is 36 pW. XOs in series resonance can gener-
ate about 100-mVpeak−peak single-ended oscillation amplitude
while keeping VOSC = 2 mV across the crystal [9]. With
the crystal model above and VOSC = 2 mV, the crystal loss
in series resonance is calculated as 40 pW using (4). The
crystal loss of 36 pW in parallel resonance and 40 pW in
series resonance sets the fundamental limit on the lowest
possible power consumption under the assumptions of crystal
parameters, VOSC, and CP.

C. How and When to Inject Energy Into Crystal

This fundamental limit on power consumption can only be
achieved with an ideal XO circuit. For a realistic XO circuit,
there are numerous fundamental challenges to achieving nW
power levels: first, power is required to convert the sine wave
from the crystal into square wave clock; second, the efficiency
of energy injection; third, the power of the timing control
for energy injection; and finally, the circuit itself has noise
so when the circuit injects energy, it also injects noise into
the crystal, which disturbs the inherent oscillation. The first
challenge relates to the power required for observation, while
the other three challenges relate to injection. The injection
involves “Energy” (E), “Noise of circuit” (NC), and “Noise
injected into crystal” (NINJ) as shown in Fig. 5. Thus, the ques-
tion of how and when to inject energy is central to the design
of ultralow-power XO circuits.

As shown in Fig. 6, a conventional Pierce XO and series
mode XOs continuously inject energy into the crystal. Because

Fig. 7. (a) Model of differential injection after the oscillation is started,
(b) equivalent capacitance seen by one side of the differential driver during
a differential injection, and (c) attenuation of the oscillation amplitude
w/ and w/o pulsed injections.

they use Class A operation, the injection efficiency is low,
and the noise from the circuit is continuously injected into the
crystal. In addition, referring to the theory of phase noise [13],
at the peak and the valley of the waveform, the oscillation
phase has the minimum sensitivity to amplitude change or
noise. These observations led to the pulsed driver design of
the XO proposed in [1]. The injection efficiency can be close
to 100% in theory. Because the injections happen at the peak
and valley, the phase error of the crystal oscillation due to
injections is minimized. Interestingly, we found that because
the driver for injection is duty-cycled, the circuit noise is also
sampled, reducing the noise injected into the crystal. Assuming
the low-frequency noise from the driver and power supply of
the driver is NC as shown in Fig. 6, the averaged noise injected
into the crystal related to NC is

N̄INJ = D · N̄C (5)

D = 2

n
× Tpulse

TXO
(6)

where Tpulse is the pulsewidth of the injections, TXO is the
period of crystal oscillation, and 2/n means there are two
injections in n periods (n = 1 for the pulse injection in Fig. 6).
Since pulsed injections happen every peak and valley and the
control signals for drivers must be bootstrapped, the switching
power related to the control signals to activate the injections
is high. The motivation of the proposed HERO in Fig. 6 is
based on these two observations. We think that if we do energy
injection at a lower frequency than the oscillation frequency,
we could achieve lower power and better noise performance.
However, there are two questions that we must figure out
to consider the proposed concept as a feasible technique:
1) is it possible to do energy injection at a lower frequency
than the oscillation frequency? and 2) how strong are these
subharmonic pulsed injections required to be to compensate
the crystal loss?
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To investigate these two questions, we use the model of
differential pulsed driver shown in Fig. 7(a). Fig. 7(b) presents
the equivalent capacitance seen by one side of the differential
driver during a differential injection. All the following analyses
in Section II assume ideal driver. Once crystal startup is
achieved, and assuming VOSC = 100 mV, if we turn off
the drivers and let the crystal run freely, we can calculate
the amplitude attenuation. First, with the simplified model
in Fig. 4, the energy stored in the crystal can be calculated as

EStored = 0.5 × (CS||CL) · V 2
OSC,INT

≈ 0.5CS · V 2
OSC,INT (7)

Then, the amplitude attenuation of VOSC,INT in Fig. 4 can
be obtained

�VOSC,INT

≈ VOSC,INT −
√

2 × (
EStored − ELoss,T

)
CS

= VOSC,INT −
√

2EStored · (1 − 2π
Q

)
CS

= VOSC,INT ·
(

1 −
√

1 − 2π

Q

)
≈ VOSC,INT · π

Q
. (8)

Finally, because VOSC has the same attenuation ratio as
VOSC,INT, the attenuation of VOSC after one cycle due to the
crystal loss can be estimated as

�VOSC ≈ VOSC · π

Q
. (9)

With VOSC = 100 mV, after one cycle, the oscillation
amplitude attenuation, �VOSC, is only 4.5 μV because of the
high Q of the crystal as shown in Fig. 7(c). Hence, the XO
circuit does not need to inject energy every cycle; it can
continue to extract the clock even if the drivers are turned
off for a period of time. Now we would like to derive the
relationship between the injection step, VINJ, and the injected
energy. In XOs with pulsed driver, the energy is injected into
the capacitive network formed by CO and CP through short
pulses, and then part of this energy would move to the crystal
through the inductor current. This perspective provides a way
to calculate the energy injected into the crystal by checking the
stored energy in the capacitive network before and after the
injections [1]. Yoon et al. [1] show the derivation of injected
energy and injection step in the case of single-side injection.
The energy removed from the capacitive network due to the
pull-down pulse can be calculated as

EDown,S = 0.5CNetwork,S · V 2
INJ,S (10)

where CNetwork,S is the equivalent capacitance seen by
the single-side driver during a single-sided injection and
CNetwork,S = CP + CO||CP [1]. The energy added to CNetwork,S

because of the pull-up pulse can be calculated as

EUp,S = 0.5CNetwork,S · V 2
DD − 0.5CNetwork,S · (VDD − VINJ,S)

2

= 0.5CNetwork,S · VINJ,S · (2VDD − VINJ,S). (11)

Then, the energy added to the capacitive network after one
pull-down pulse and one pull-up pulse can be calculated as

EINJ,S = EUp,S − EDown,S

= CNetwork,S · VINJ,S · (VDD − VINJ,S)

≈ CNetwork,S · VINJ,S · VOSC. (12)

In differential driver, because when V1 or V2 is being
pulled up, the other side of the crystal is being pulled down,
CNetwork = CO + CP can be obtained by considering the other
side of crystal as ac ground, as shown in Fig. 7(b). The energy
injected after two injections (one pull-up and one pull-down)
can be estimated as

EINJ,Diff = 2CNetwork · (VDDL − VINJ) · VINJ

≈ 2 × (CO + CP) · VOSC · VINJ. (13)

The energy dissipated in the crystal during one period is

ELoss,T = PLoss,PR ·TXO ≈0.5RS · (VOSC ·CL · ωS)
2 · TXO. (14)

The required injection step to compensate the crystal loss
in n period can be obtained using (13) and (14)

EINJ,Diff = n · ELoss,T (15)

VINJ ≈ 0.5n · RS · (VOSC · CL · ωS)
2 · TXO

2 × (CO + CP) · VOSC

≈ 0.5n · RS · VOSC · C2
L · ωS · (2π fXO)

2 × (CO + CP) · fXO

≈ 0.5π · n · RS · VOSC · C2
L · ωS

(CO + CP)

= 0.5π · n · VOSC · C2
L

(CO + CP) · Q · CS
. (16)

With the crystal model (Section II-B) and 100-mV oscilla-
tion amplitude, an injection step VINJ of 2 mV is required to
compensate the crystal loss in one period (n = 1). Since the
energy injected into the crystal is proportional to VINJ (13),
if we want to compensate for the loss in eight cycles, we will
need a VINJ of about 16 mV (n = 8). This represents a reason-
ably small magnitude compared with the 100-mV oscillation
amplitude. Hence, it is feasible to perform injections at a
much lower frequency than 32 kHz. This analysis leads to
our proposed concept.

Instead of continuous injection or pulsed injection, we pro-
pose HERO with two injections in eight periods. With this
configuration, the switching loss on average is reduced and
less noise is injected into the crystal on average (n = 8
in (6)). In addition, because the injections happen around the
peak and valley of the oscillation, the effect of injection and
noise on the phase of crystal oscillation is minimized. Here,
we are discussing about how the pulsed injection with energy
and noise disturbs the crystal oscillation, and we have not
considered the implementation of the circuit to convert this
crystal oscillation waveform into a rail-to-rail clock. We will
continue this discussion in Section IV-C.

A tradeoff here is that it requires a bigger injection step
to inject more energy, which reduces the injection efficiency.
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Fig. 8. Injection efficiency for two injections across a varying number of
periods and the corresponding power from VDDL (VOSC = 100 mV).

The injection efficiency can be estimated as [1]

ζ = EINJ

EVDDL

≈ VDDL − VINJ

VDDL
= VOSC

VDDL
(17)

where VDDL = VOSC + VINJ. Referring to (16), targeting at the
same VOSC, VINJ increases linearly as n increases. With (3)
and (17), the power from VDDL can be calculated as

PVDDL = PINJ

ζ
= PLoss,PR

ζ
= 0.5RS · (VOSC · CL · ωS)

2

ζ
. (18)

As shown in Fig. 8 assuming VOSC = 100 mV, the injection
efficiency in theory drops from 97.7% to 84.2% when we do
two injections in eight periods instead of two injections in each
oscillation period. Meantime, the estimated power from VDDL

to compensate for the crystal loss increases from 37 to 43 pW.
Hence, because the crystal loss is only tens of pW, although
the injection efficiency drops after we do two injections in
eight periods, the power overhead due to a lower injection
efficiency is small.

To analyze the noise performance of the proposed design,
we introduce ENR and it can be calculated using (5) and (6)
as

ENR = ĒINJ

N̄INJ
= ĒINJ

D · N̄C
= n

2
× TXO

Tpulse
· ĒINJ

N̄C
. (19)

Both ENR and phase noise present the ratio between
injected noise and power of the oscillation signal. Phase noise
is a function of injected noise and power of the carrier [13].
As to the crystal oscillation, the injected energy is proportional
to the power of the carrier. When ENR increases, the ratio
between the injected noise and power of the carrier decreases,
which leads to better frequency stability or lower phase noise.
To achieve the same oscillation amplitude VOSC, the average
injected energy in the conventional pulsed XO is the same as it
is in the proposed HERO. With the same pulsewidth, the ENR
in the proposed HERO (n = 8) will be eight times of the ENR
in the conventional pulsed XO, as shown in Fig. 6. We assume
a constant Tpulse for the varying n because there would be a
fundamental limit on minimum achievable pulsewidth for a
given CMOS process. NC reflects the low-frequency noise
from the circuit, including noise in circuit due to power
supplies and environment which should be independent of n,

so we assume a constant NC for the varying n in the analyses
of ENR.

In the above analyses, we assume an oscillation amplitude
to decide the crystal loss or injected energy on average. In real
implementation, in the case that we fix power supply voltage
for the driver [VDDL in Fig. 7(a)], VOSC would decrease while
we reduce the injection rate because VOSC = VDDL − VINJ

and larger VINJ is required to compensate the crystal loss.
From (16), we can obtain

VDDL = VOSC + VINJ = VOSC + 0.5π · n · VOSC · C2
L

(CO + CP) · Q · CS
. (20)

Then, VOSC can be calculated as a function of n and VDDL

VOSC = 1

1 + 0.5π ·C2
L

(CO+CP)·Q·CS
· n

· VDDL. (21)

With the crystal model in Section II-B, we can estimate
VOSC as

VOSC ≈ 1

1 + 0.0235 × n
· VDDL. (22)

Using (14), (19), and (21), we can obtain ENR as a function
of n

ENR = n

2
× TXO

Tpulse
· ĒINJ

N̄C
= n

2
× TXO

Tpulse
· ELoss,T

N̄C

≈ n

2
× TXO

Tpulse
· 0.5RS · (VOSC · CL · ωS)

2 · TXO

N̄C

≈ n · TXO

Tpulse
· π2 RS · C2

L

TXO · N̄C
· V 2

OSC

= π2 RS · C2
L · V 2

DDL

Tpulse · N̄C
· n(

1 + 0.5π ·C2
L

(CO+CP )·Q·CS
· n

)2 . (23)

Referring to (21)–(23), with a fixed VDDL, the oscillation
amplitude decreases as n increases because it requires larger
injection step, VINJ = VDDL−VOSC as n increases. The injected
energy at steady-state is equal to the crystal loss which is a
quadratic function of VOSC. This means the injected energy
gets lower as n increases when VDDL is fixed, while the
injected energy does not change with n if we fix VOSC by
changing VDDL = VOSC + VINJ as n increases. With the same
VOSC at n = 1 and the same amount of noise at certain n,
the ENR with fixed VDDL would be lower than the ENR with
fixed VOSC at n > 1. With (23), we can plot ENR (solid line)
as a function of n in Fig. 9, normalized with ENR at n = 1
in (23). The normalized ENR based on (19) with a fixed VOSC

is also plotted as dashed line in Fig. 9. We can tell how fixed
VDDL limited the ENR improvement as n increases. Referring
to (22), the ratio between VOSC and VDDL is also shown
in Fig. 9. Compared with Fig. 8 that assumes VOSC = 100 mV,
Fig. 9 presents how VOSC shrinks as the injection rate decreases
when VDDL is fixed.

Figs. 8 and 9 present the tradeoff between the injection
efficiency (VOSC/VDDL) and ENR as we change the injection
rate (or n). With a fixed VDDL and the assumptions of crystal
model, n = 8, 16, or 32 provides a balance between the
injection efficiency (VOSC/VDDL) and ENR. Because we have
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