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Abstract—We present the first ASIC accelerator for a pair-hidden-
Markov-model (Pair-HMM) in DNA variant calling, which conventionally
requires ~250T FLOPs per sequenced human genome. Using a hardware-
algorithm co-design, we opportunistically replace floating point (FP)
multiplication with 20-b log-domain addition while employing bound
checks to maintain (provable) correct results in downstream process-
ing. FP computation is reduced by 43x on real human genome data.
Implemented in a 40-nm CMOS, the 5.67 mm? accelerator demon-
strates 17.3G cell updates per second (CUPS) throughput, marking
a 6.6x improvement over our baseline ASIC implementation and
355x GCUPS/mm? improvement over an FPGA implementation [2].

Index Terms—Algorithm-hardware co-design, floating point (FP) prun-
ing, hardware accelerator, high throughput, pair-hidden-Markov-model
(Pair-HMM), variant calling.

I. INTRODUCTION

Recent advances in next-generation sequencing have enabled fast
DNA identification for cancer, genetic disorders, and pathogen detec-
tion. As shown in Fig. 1, short DNA fragments are sequenced in
a massively parallel fashion, producing billions of DNA reads (strings
of ~100 nucleotides: A, C, G, T) per human genome. Reassembling
these DNA fragments to determine differences compared with a com-
mon reference genome (referred to as secondary analysis) requires
extensive computation. The short reads are aligned to a reference
genome in read alignment to determine the location of each read’s
origin. The aligned reads are then processed in the second step:
variant calling. During variant calling, plausible candidate mutation
strings are constructed from aligned reads. Then the likelihood of
each candidate mutation strings is evaluated against each read using
Pair-HMM forward algorithm (or PFA). Finally, the likelihood of each
mutation is marginalized, and the most likely mutation is picked as
output. Details of variant calling will be introduced in Section I-A.
Variant calling is responsible for identifying disease-related gene
mutations and remains extremely time consuming. In particular,
PFA for variant calling requires ~250T FLOPs to infer mutation
probabilities and contributes 52% of variant calling computation as
shown in Fig. 2(a).

The PFA requires an alignment matrix calculation with a compli-
cated combination of floating point (FP) addition and multiplication
to infer the overall similarity of two strings, making it a challeng-
ing hardware optimization problem. The PFA has been mapped to
a GPU [8] as well as FPGAs using systolic array [3]-[6] and ring-
based topologies [2], [7]. However, these methods are constrained by
the availability of FP resources. Also, they are direct hardware map-
pings that do not reoptimize the algorithm to make them hardware
friendly. Furthermore, no dedicated ASIC has been demonstrated to
date to accelerate the PFA for DNA sequencing.
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Fig. 2. (a) Runtime breakdown of variant calling. (b) Die photo.

We proposed the first ASIC implementation of the PFA (in
prior paper [10]) and demonstrated its operation in a complete
DNA sequencing flow. We made the key observation that the output of
pair-hidden-Markov-model (Pair-HMM) matrix is mostly contributed
by the probabilities of only a few high-quality alignment paths,
despite the fact that the algorithm computes all possible alignments
between read and candidate mutation string. Intuitively speaking,
if one alignment path has only insertions and deletions, its prob-
ability score will likely to be orders of magnitude lower than an
optimal alignment which mostly consists of matches. In a typical
Pair-HMM matrix, most alignment paths are low-quality paths which
consist of too many insertions, deletions, or mismatches. Using a new
algorithm-hardware co-design inspired by this key observation, we
alleviate the throughput bottleneck caused by limited FP resources
by devoting FP resources only to estimate high-quality alignment
regions (Fig. 4). For nonhigh-quality regions, FP multiplication is
replaced with low-accuracy 20b integer addition by using log domain
number representation, greatly improving the performance. By main-
taining error bounds on this low-precision log-domain calculation,
we detect and, as needed, rerun with high precision those few cases
with possible failure, thereby, obtaining (provable) correctness in the
downstream analysis. As a result, FP computation is reduced by 43 x
when tested on real human data and is replaced with 20 bit log-
domain integer processing units (I-PEs) that are 4.6 x smaller in area
and 1.9x higher in performance than FP-PEs.

A. Overview of Variant Calling

GATK’s HaplotypeCaller is one of the most widely used vari-
ant calling tools today [9]. As shown in Fig. 1, the goal of variant
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Fig. 3. Overview of variant calling illustrating Pair-HMM and its downstream
processing steps.

calling is to identify mutations (i.e., base pairs in the sample that
are different from the reference) using evidence supported by reads.
The general flow of variant calling is illustrated in Fig. 3. The tool
first identifies active regions (typically hundreds of base pairs) where
reads are likely to be different from the reference genome. Second,
each of the active regions is reassembled using a De-Bruijn graph to
construct plausible candidate mutation strings, H1-H3. Each candi-
date mutation string is a string (~hundreds of base pairs) containing
identical substrings as well as different mutations. Third, the per-
read likelihood of each candidate mutation string is calculated using
a Pairr-HMM forward algorithm, generating a matrix of likelihoods
(Matrix1) for each read (R1-R4) and each candidate mutation string
(H1-H3). Pair-HMM is extremely time-consuming and contributes
52% of variant calling computation according to our benchmark of
HaploytpeCaller [9] v4.0.11 with chromosome 16, 17, and 18 of
HGO00419 from 1000 Genomes database (run on Xeon CPU E5 with
single thread and AVX support for Pair-HMM acceleration).

In the downstream processing (steps after Pair-HMM), mutations
Al, A2 (short substitutions, insertions, and deletions of a few base
pairs) are extracted from mutations strings, transforming the string-
based likelihoods matrix Matrix1 to mutation-based likelihood matrix
Matrix2. During this marginalizing transformation, the highest like-
lihood of all strings containing a specific mutation is picked as this
mutation’s likelihood. For example, if both mutation strings H2 and
H3 contain mutation A2, the higher per-read likelihood of H2 and
H3 in Matrix1 is picked as the per-read likelihood of A2 in Matrix2.
Genotypes G1-G3 are generated from mutations A1-A2 based on the
ploidy of the sample. The probability of each genotype is derived
from Matrix2 using a Bayesian model. Finally, the most likely
genotype is called as the variant.

B. Conventional Pair-HMM Forward Algorithm

A conventional PFA calculates the likelihoods of all alignments
between a candidate mutation string and a DNA read using an align-
ment matrix (Fig. 4, left). Each cell (7, j) indicates how base pair i in
the read is aligned to base pair j in the mutation string using one of
the three states—insertion, deletion, or match (containing both substi-
tution and real match). Each path in the alignment matrix is a series
of state transitions representing one alignment between the read and
the mutation string. The PFA aims to infer the sum of probabilities
of all alignments.

The likelihoods M, I, and D of a particular cell (i, j) is computed
from the likelihood of its three neighboring cells: vertical neighbor
cell (i — 1, j) representing an insert transition, diagonal neighbor
(i — 1, j— 1) for a match transition, and horizontal neighbor (i, j — 1)
for a delete transition (Fig. 4, left). The computation in each cell
involves several additions and multiplications, and single-precision
FP is typically required to avoid underflow. The detailed calculation
of the PFA is outlined in (1)—(4). The coefficients w0-6 are either
fixed parameters or related to base pair quality scores. Nr and Nh are
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Fig. 5. (a) Two-phase operation of the proposed pruning-based PFA.

(b) Detailed pruning methodology of the proposed pruning-based PFA.

the lengths of the read and mutation strings, respectively
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II. PRUNING-BASED ALGORITHM-HARDWARE CO-DESIGN
A. Proposed Pruning-Based Pair-HMM

We make the key observation that the final score of the matrix
is typically dominated by the probabilities of only a few alignment
paths, thanks to high quality reads and a small likelihood of genetic
mutations. To identify these dominant paths, the proposed pruning-
based Pair-HMM algorithm executes in two phases [Fig. 5(a)].

In the scan phase, an upper bound likelihood for each cell in the
alignment matrix is computed using I-PEs operating in logarithmic
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number representation, which replaces multiplication with addition
and significantly reduces the hardware complexity. We observed that
most dominant paths contain long consecutive diagonal transitions.
Therefore, starting from the cell with the maximum matched score in
the final row, the algorithm traces back along diagonal cells, pruning
horizontally and vertically adjacent cells (i.e., treating their likelihood
as zero). It continues this trace as long as the pruned cells, represent-
ing delete/insert transitions, do not contribute significantly to the cell
score. The result of the first phase is a pruned region as well as an
upper bound of the final score of the entire matrix.

In the following refinement phase, the (small) un-pruned region is
computed using FP-PEs (the likelihood of the pruned region is set to
zero), resulting in a (tight) lower bound.

B. Handle Accuracy Degradation With Error Bound Check

The results from the proposed scan phase and refinement phase
suffer from accuracy degradation due to the use of fixed point and
pruning. To guarantee a (provable) correct final output after down-
stream processing, we propose to use the upper bound (result of
scan phase) and the lower bound (result of refinement phase) esti-
mation of the exact PairHMM result in the downstream analysis.
Unlike the conventional method where the output of Pair-HMM is
one exact value computed on the entire alignment matrix using FP,
the proposed pruning-based Pair-HMM outputs a lower bound and an
upper bound of the exact result. Since the main goal of downstream
processing is to compare the probabilities of candidate mutations and
pick the most likely mutation (Fig. 3, bottom), we substitute this
comparison with error bound comparison. As illustrated in Fig. 4,
if the lower bound of the selected genotype G2 is higher than the
upper bound of all the unselected genotypes, it is guaranteed that the
selected genotype has the highest probability. Otherwise, the bounds
overlap, and we cannot infer a guaranteed result based on the cur-
rent error bound estimation of genotypes. In this case, recomputation
of the original Pairr-HMM matrix is performed. These failing cases
(1.5%) are guaranteed to be identified and are recomputed using only
FP-PEs, according to our benchmark using chromosome 1 of sam-
ple HG00419 from the 1000 Genomes database. Therefore, through
a bound comparison in a downstream analysis and selected recompu-
tation, the mutation with the highest likelihood among all candidate
mutations is correctly determined as the final variant calling result in
all cases.

As briefly described in thesis [11], the upper bound result comes
from the scan phase and is an estimation of the entire alignment
matrix using fixed points in the log domain. The upper bound is
generated by rounding up in each approximation. The lower bound
result comes from the refinement phase and is an accurate computa-
tion of the unpruned section of the alignment matrix using FP. Since
only a subset of the alignments are calculated, the result is naturally
a lower bound of the exact result.

Recomputation is done iteratively on a read-by-read basis until the
bounds do not overlap so that unnecessary recomputation can be min-
imized. Once a read-haplotype pair is selected for recomputation, the
conventional Pai-HMM method with only FP operations is used to
obtain the exact result. This methodology can be used in downstream
processing steps as long as all operations involved preserve the error
bounds.

C. Details of Cell-Level FP Pruning

Fig. 5(b) shows the pruning method in the scan phase in more
detail. The cell (/,J) with the highest match score in the final row
indicates the end position of a good alignment and is picked as the
seed position for pruning. In the PFA, the match score at the seed
M(1,J) is the weighted sum of M, I, D from the diagonally adjacent
cell (/ —1,J — 1). If this match score is significantly larger than the
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Fig. 6. Top-level architecture of pruning-based PFA accelerator.

insertion and deletion scores in cell (/ —1,J — 1), we would arrive at
a slightly lower M (I, J) score with insertion and deletion scores set
to zero in cell (I — 1,J — 1). This allows us to prune insertion and
deletion scores in (I — 1, J — 1) and all their adjacent cells to the top
and left. The pruning stops at the cell (/stop, Jstop) where the match
no longer shows dominance over the insertion and deletion scores.
For FP-PE computation, this results in a (small) rectangular region in
the top-left of the matrix, followed by a string of consecutive match
transitions [Fig. 5(b), shown in red].

D. Matrix-Level Floating Point Pruning

During marginalization in downstream processing, mutation strings
containing the same mutation compete, and the string with the highest
likelihood gets selected. Low per-read likelihoods are likely to lose in
marginalization and never get used in the final step. Inspired by this
implicit filtering, we propose matrix-level FP pruning. If the upper
bound result from a scan phase is too small, the whole refinement
phase with FP calculation is skipped entirely and the lower bound of
this skipped PFA is set to 0. The threshold for matrix-level pruning
is set empirically.

E. Early Stop Detection in Fixed Point Computation

As we are able to substitute the majority (97.7%) of the FP
workload with a fixed point approximation, the throughput improve-
ment over conventional PFA becomes bottlenecked by the area and
performance gain of fixed point PEs over FP PEs. To further improve
the throughput, we aim to reduce the fixed point workload (i.e., the
scan phase) by early stop. Similar to matrix-level pruning for FP,
a fixed point calculation can be terminated early if the final PFA out-
put is predicted to be small. The values in row i of the PFA matrix
represent all of the alignments between the entire mutation string and
a prefix of the read up to base pair j. As integer PEs propagate through
the alignment matrix row by row, the likelihoods decrease with each
added read base pair in the alignment. Therefore, the maximum value
of all of the cells in the current row (Pmax,j) is a loose upper bound
estimation of the final result. If Pmax,j is smaller than a threshold
fL, the upper bound calculation is terminated and the scan phase is
stopped early. The loose upper bound Pmax,j and loose lower bound
0 are passed to downstream processing.

III. HARDWARE IMPLEMENTATION

Fig. 6 shows the overall architecture of the proposed pruning-based
Pair-HMM accelerator. It consists of 10 scan machines composed of
16 I-PEs each to upper bound and prune matrices and 4 refinement
machines composed of FP-PEs to accurately compute the unpruned
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regions. The refinement machines come in two sizes with 1x and
4x FP-PEs to accommodate the variable size of un-pruned regions.
An on-demand arbiter streams in jobs from the input memory, dis-
patches them to scan and refinement PEs, and streams the results to
the output memory. The number of FP-PEs on the prototype acceler-
ator is determined by the pruning ratio, i.e., the average percentage
of FP calculation that can be substitute with fixed point calculation.
This average pruning ratio (97.7%) gives us an estimated ratio of
FP workload and fixed point workload. Due to temporal variation of
pruning ratio, FP-PEs can be temporarily underutilized or overuti-
lized, leading to a degraded throughput as reflected in our actual
measurement. A tradeoff between cache size (to minimize impact of
temporal workload imbalance) and overall throughput can be studied
in future works.

Fig. 7 shows the hardware implementation of a scan machine, con-
sisting of 16 PEs (Fig. 8), an input feeder to control PE traversal
across the matrix, a binning-based log-sum module to avoid accuracy
degradation in the last row, and an early stop detection module. Each
PE uses 20 bits fixed point addition and a 15-entry table lookup in
the log domain as substitutes for multiplication and addition, respec-
tively, in the real domain. Instead of tracing back to determine the
pruned region, the logic in the PEs prune cells as PEs traverse for-
ward across the matrix, avoiding the need to store scores for the
entire matrix. The PEs work in parallel when traversing the matrix
from left to right. As the PEs traverse, an early detection module
opportunistically stops the scan phase once the maximum score in
one row is smaller than an established threshold. This optimization
takes advantage of downstream processing where extremely low Pair-
HMM results are filtered completely, reducing the workload even in
the scan phase (by 18%). Because only adjacent PEs communicate
with each other, the routing complexity is greatly reduced.
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TABLE I
PERFORMANCE COMPARISON
2 4] 18] 18] This work
FPGA FPGA CPU GPU
Platform Arria 10 Virtex7 | POWERS (20 cores) | Nvidia Tesla kdo| 2SI
Technology 20nm 28nm 22nm 28nm 40nm
Chip area (mm?’) 858’ 858 1298 561 5.67
Topology PE ring Systolic array N.A. N.A. Pruning-based
Frequency (MHz) 230.73 166.7 3420 745 120
Power (W) N.A. N.A. N.A. N.A. 0.756
Peak floating point performance
(GFLOPS) 1366 2000 1094.4 4290 6.9
Throughput normalized to floating
oint perfoamance (CUPSIFLOPS) 0.0216 0.0113 0.0024 0.0006 2.5072
Throughput normalized to area . . 0 5
GCUPS/mm? 0.0086 0.0129 0.0006 0.0023 3.0511
Power efficiency (GCUPS/W) N.A. N.A. N.A. N.A. 22.8836
Only reticle size was available *Normalized to technology node

IV. MEASUREMENTS AND PERFORMANCE ANALYSIS

Fig. 9(a) summarizes the main techniques employed in the
proposed pruning-based Pair-HMM and the respective computation
reduction. This benchmark is carried out using chromosome 1 of
sample HG00419 from the 1000 Genomes database. Compared to
the baseline algorithm, cell pruning alone achieves an 8.3 x FP work-
load reduction. By implementing matrix pruning, we achieve 43 x FP
reduction. By using the early stop technique in the scan phase, a 18%
fixed point calculation can further be saved, leading to an extra 1.22x
increase in throughput during scan phase.

Fig. 9(b) shows the tradeoff between fixed point precision and total
FP workload reduction. As fixed point precision increases, the recom-
putation rate is reduced thanks to a tighter upper bound estimation. As
a result, the total FP workload reduction (including recomputation)
improves at the cost of higher fixed point PE complexity.

Fig. 10(a) shows the performance and area gain (from Automatic
Place and Route) of fixed point PE over FP PE. Fixed point PEs are
4.6x smaller in area and 1.9x higher in performance than FP PEs,
leading to a 9.5x improvement at maximum if all FP workload is
replaced with fixed point.

Fabricated in 40-nm CMOS with 5.67 mm? die area, the accelera-
tor reaches 120 MHz with 756 mW. Fig. 10(b) shows that the number
of cells requiring FP calculation is reduced 43x (including recom-
putation due to bound check failure). The proposed accelerator was
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verified with real sequencing data: chr22:16040000-16540000 of sam-
ple HG00419 from the 1000 Genomes database. It shows 17.3 GCUPS
average throughput (including recomputation) which is a 6.6x
improvement over an FP-only baseline ASIC implementation (nor-
malized to the same area). We also compared the throughput of the
proposed work with prior works. The common way to benchmark
the Pair-HMM is to use a synthetic data “10s” [12]. However, this
test dataset was designed specifically to the conventional method
where Pair-HMM is a self-contained step that outputs a single result.
Our proposed method outputs an upper bound and a lower bound
that needs to be checked in downstream processing for error bound
overlapping and, therefore, cannot be evaluated with the standard
“10s” dataset. In addition, the overall throughput of the proposed
method is affected by recomputation rate, which depends on the
actual quality of the input reads produced by sequencing machine.
Therefore, it is important to use a real sequencing dataset so that
the recomputation rate can be correctly evaluated and included in
throughput comparison.

To establish a conservative throughput comparison between the
proposed work and prior works, we quote the maximum theoretical
throughput (assuming 100% PE utilization at all time) for prior works
while using the actual measured throughput for our work using sam-
ple HG00419. The maximum theoretical throughput is the product of
peak frequency and total number of PEs. Therefore, the throughput
numbers for prior works (Table I) are an optimistic estimation of
their actual throughput.

We obtain speedups of 355x and 1344 x in CUPS/mm? compared
to FPGA [2] and NVidia K40 GPU [8] implementations, respectively.
Fig. 2(b) shows the die photograph.

V. CONCLUSION

In summary, we proposed a pruning-based Pair-HMM forward
algorithm and, to our knowledge, its first ASIC accelerator to
speed up secondary analysis in whole-genome sequencing. This
algorithm-hardware co-design reduces FP calculations by 43x. As

summarized in Table I, the implemented ASIC accelerator achieves
a speedup of 6.6x over an FP only, baseline ASIC implementation.
It achieves 355x and 1344x increase in CUPS/mm? compared to
FPGA [2] and GPU [8] implementations, respectively.
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