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Abstract— Miniaturized and wireless near-infrared (NIR)-
based neural recorders with optical powering and data telemetry
have been introduced as a promising approach for safe long-term
monitoring with the smallest physical dimension among state-
of-the-art standalone recorders. However, the main challenge
for the NIR-based neural recording integrated circuits (ICs) is
to maintain robust operation in the presence of light-induced
parasitic short-circuit current from junction diodes. This is
especially true when the signal currents are kept small to reduce
power consumption. In this work, we present a light-tolerant and
low-power neural recording IC for motor prediction that can fully
function in up to 300 µW/mm2 of light exposure. It achieves the
best-in-class power consumption of 0.57 µW at 38 ◦C with a
4.1 noise efficiency factor (NEF) pseudo-resistor-less amplifier,
an on-chip neural feature extractor, and individual mote-level
gain control. Applying the 20-channel pre-recorded neural signals
of a monkey, the IC predicts finger position and velocity with
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a correlation coefficient up to 0.870 and 0.569, respectively,
with individual mote-level gain control enabled. In addition,
wireless measurement is demonstrated through optical power and
data telemetry using a custom photovoltaic (PV)/light-emitting
diode (LED) GaAs chip wire bonded to the proposed IC.

Index Terms— Brain–computer interface (BCI), brain–
machine interface (BMI), neural implant, wireless neural record-
ing, wireless sensor node.

I. INTRODUCTION

BRAIN–MACHINE interface (BMI) or brain–computer
interface (BCI) has been developed with the initial

goal of restoring function for people who are paralyzed,
amputated, or suffer from neuromuscular disorders. Recent
research on neural electrode probes [1]–[7] and neural record-
ing application-specific integrated circuits (ASICs) [7]–[11]
has enabled efficient high-channel recording and decoding
along with new findings of various neural features and the
development of decoding algorithms. However, the array of
wires required for power and data communication and the
bulky form factor of the neural recording ASICs has lim-
ited the use of conventional high-channel recording systems
[7]–[11]. Although flexible electrode wires [5]–[7] alleviate
some of the challenges, the associated tethering forces increase
the risk of scar tissue and thus prevent safe and long-term
monitoring of neural activity.

To address this challenge, different free-floating neural
recorders have been proposed with miniaturized size,
a characteristic critical to achieving dense recording sites and
minimum brain damage. These miniaturized standalone free-
floating motes include only single channel per mote rather
than multi-channels with denser array of electrodes. While
the latter approach can achieve very small intra-mote channel
pitch, the chip size needs to be increased accordingly and,
hence, results in similar average pitch between channels.
Therefore, in terms of acquiring multiple independent sources
of information, regular spacing of the single-channel free-
floating motes is preferable to supersampling small spatial
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Fig. 1. Conceptual illustration of two-step wireless neural recording system and NIR-based free-floating motes.

regions with wide gaps between groups of channels of multi-
channel free-floating motes. A near-field RF-based neural
grain [12], [13] is one such system. The neural grain records
electrocorticography (ECoG) signals with near-field RF-based
power transfer and bidirectional communication. In [13],
in vivo measurement with multiple implanted neural grains
is demonstrated; however, the remaining challenge is that
0.5 W of transceiver (Tx) power is required to operate
0.5 mm × 0.5 mm RF-based neural grains, which exceeds
the safety regulations by 10× [12]. Another approach uti-
lizes ultrasound for wireless power transfer and data link.
Ghanbari et al. [14] introduced an ultrasound-based neural
dust that adopts amplitude modulation (AM) backscattering
for data telemetry, achieving low nonlinearity below 1.2%.
However, it requires a 0.75 mm × 0.75 mm × 0.75 mm
bulky piezoceramic, which results in an overall dust size of
0.8 mm3. Alternatively, in [15] and [16], a near-infrared (NIR)
light is exploited for power and data telemetry using a custom
photovoltaic (PV) cell and light-emitting diodes (LEDs). The
NIR-based neural recorder reported in [15] achieves the small-
est size, 0.25 mm × 0.06 mm, reported to date among state-
of-the-art standalone free-floating neural recorders. However,
lacks data downlink capability and the surface electrode of the
mote only allows surface potential monitoring or injection of
the whole mote into brain tissue, which can cause bleeding or
tissue damage.

In [16], a 0.74-μW 0.19 mm × 0.17 mm NIR-based
wireless neural recorder with random chipID [17] and on-chip
neural feature extraction is proposed. It is designed based
on the two-step wireless neural recording concept described
in Fig. 1. In the envisioned system, numerous free-floating
motes are placed in the sub-dural space to record neural
activities, while only carbon fiber electrodes with less than
10 μm diameter [18] penetrate several millimeters into the
brain tissue. As the carbon fiber electrodes have been shown
to incur minimal chronic scar formation [18], the proposed
system can improve the long-term sustainability significantly.
A repeater unit in the epidural space (Fig. 1, center) powers
and programs free-floating motes by emitting 850-nm NIR
lights. A custom dual-junction PV layer on top of the CMOS
circuit layer of the free-floating motes harvests the energy.

Fig. 2. Cross section of the CMOS circuit layer with light-induced parasitic
short-circuit currents.

At the same time, the optical receiver (ORx) translates light
modulation into digital data. A custom micro-LED transmits
data by firing LED pulses so that the repeater unit receives the
pulses emitted from multiple motes using an array of single-
photon avalanche diodes (SPADs) to decode them using the
random chipIDs of the motes.

This work uses the same system architecture as that pro-
posed in [16] and builds on it by proposing a new CMOS
circuit layer that addresses the challenge of light tolerance.
Although most of the perpendicular light used to power the
motes is absorbed by the GaAs-based PV layer [19] that
sits on top of the CMOS circuit layer, the reflected and
scattered 850-nm NIR light still can penetrate through the
sidewalls of the free-floating motes (Fig. 2), impacting overall
circuit performance. Furthermore, the sub-μW circuit with
limited supply current is particularly susceptible to light-
induced parasitic short-circuit currents. In conventional chip
packaging, the light can be blocked using an opaque encap-
sulant, whereas NIR-based free-floating motes need the PV
layer and LED exposed to the light for wireless powering
and data communication. A partly transparent encapsulation
that exposes the PV layer and LED only and blocks light
for the CMOS circuit layer is problematic for sub-mm-level
packaging. Therefore, a light-tolerant circuit design is essential
for the robust operation of the envisioned neural recording
system.
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Fig. 3. Top circuit diagram of the proposed light-tolerant neural recorder.

To address this challenge, we proposed a light-tolerant
neural recording integrated circuit (IC) for NIR-based free-
floating motes that wireless operate under 150 μW/mm2 of
target optical power density [20]. It achieves light-robust
operation up to 300 μW/mm2 of NIR light power density,
whereas the baseline implementation fails at 8 μW/mm2 [16].
In addition, the proposed design includes on-chip fea-
ture extraction and individual mote-level gain control capa-
bility with an overall power consumption of 0.57 μW,
which is the lowest among the state-of-the-art free-floating
motes [13]–[16].

This article is organized as follows. Section II provides the
system overview and discusses the light robustness. Section III
describes the light-tolerant circuit implementation. Section IV
presents the measurement results, and finally, Section V con-
cludes this article.

II. SYSTEM OVERVIEW AND LIGHT ROBUSTNESS

A. System Overview

The circuit diagram of the proposed neural recorder is
shown in Fig. 3. The main signal chain is composed of three
stages: neural signal acquisition, neural feature extraction,
and data transmission. The neural signal acquisition block
consists of a three-stage bandpass low-noise amplifier (LNA)
to acquire single neuron-level spikes that are probed by the
carbon fiber electrode [18]. It also passes the signal with the
frequency band of interest through precise bandpass filtering.
In this work, we focus on the 300–1000-Hz band to extract
a neural feature called spiking band power (SBP) [21]–[23].
SBP is defined as the absolute average of the signal amplitude
in the 300–1000-Hz band, and this neural feature is known
for achieving high motor prediction accuracy relative to a
standard 7.5-kHz high-bandwidth neural recording despite
its low-bandwidth output [21]–[23]. By computing the SBP
on-chip, the data uplink communication bandwidth is reduced

to a maximum of hundreds of Hz, thereby saving uplink
power and uplink channel capacity. Furthermore, the SBP is
computed with energy- and area-efficient circuits (described in
Section III). The acquired SBP data are encoded in symbol-
interval modulation (SIM) of uplink LED packets to avoid data
conversion overhead. A single uplink LED packet consists of
16-b pulse-gap-modulated (PGM) data, including the random
chipID [17].

Due to the dual-junction PV cell of the custom GaAs
chip [19], 1.5–1.6 V of supply voltage is directly supplied to
the chip, eliminating on-chip dc–dc conversion overhead. The
vertically stacked dual-junction PV cell in [19] has junctions
with the identical GaAs-based materials and bandgap energies.
It is designed to achieve equal optical absorption at each of
the junctions doubling the voltage output while reducing the
number of lateral series connections and shunt leakage paths.
The PV cell generates ISC = 1.1 μA and VOC = 1.6 V at
150 μW/mm2 of target 850-nm NIR light power density, where
190 μW/mm2 is the maximum NIR optical power density for
human dura as evaluated in [19]. In addition, ac modulation of
the NIR light power is translated into digital modulation by
ORx to execute clock and data recovery (CDR). The clock
recovery circuit locks the on-chip clock to the modulation
frequency of the light. This recovered clock is used to set an
accurate corner frequency of the bandpass transfer function
of the amplifier chain using the bias currents generated from
the switched capacitor. Note that the clock recovery is done
globally at the initial start-up phase of the multiple probes.
It makes an array of probes to be locked to the same target
frequency; therefore, the corner and the bias current of each
probe can be set accurately based on their recovered frequency,
minimizing the impact of process and voltage variation across
probes. The data recovery block receives the serial data from
the pulsewidth modulation (PWM) of the NIR light and
programs the chip configurations, including the gain setting
of the amplifier and SBP extraction unit.
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Fig. 4. Capacitive amplifier with the feedback resistor RFB and parasitic
light-induced short-circuit current ISC_P.

B. Light-Induced Current and Light Robustness

Unlike conventional chip design with opaque encapsulation,
the proposed system must maintain its performance under the
condition where NIR photons invade from the sidewall and
bounce around the CMOS layer. Basically, when photons hit
any p-n junction within the CMOS circuit layer (Fig. 2), the
light-induced carriers by the p-n junctions cause a movement
of holes to the p-side and electrons to the n-side, which is
known as a PV effect [24]. In other words, every p-n junction
may act as a small solar cell that generates short-circuit current
(ISC) that is proportional to the light power intensity and
junction area [25]:

ISC = SR · PNIR(λ) =
(

qλ

hc

)
EQE · INIR(λ) · Ajunc (1)

where SR is the spectral responsivity, EQE is the external
quantum efficiency, INIR is the NIR light intensity, and Ajunc is
the junction surface area. Any conducting path in the proposed
system, especially for analog blocks with high impedance
paths, can be affected by the parasitic light-induced short-
circuit current (ISC_P). If there is any ISC_P flowing in or out
of the conducting path between nodes X and Y, we define the
light robustness coefficient (LRC) of the conducting path as
follows:

αLR =
(

IXY∑
ISC_P

)
·
(

1

VXY

)
= G XY∑

ISC_P
[V −1] (2)

where IXY , VXY , and G XY are, respectively, the original con-
ducting current, the voltage difference, and the conductance
of the path between nodes X and Y when there is no light
at all. If a conducting path has significantly high conduc-
tance over the sum of ISC_P in the path, then the path is
barely impacted by the light and therefore achieves high light
robustness (high αLR). On the other hand, if a path has low
αLR, it is susceptible to light. One example is a capacitive
amplifier with the feedback resistor RFB (Fig. 4). In many
applications including neural recording or biomedical sensing,
a high RFB (or low GFB) is required to achieve a low-to-high-
pass corner frequency ( fHP). In conventional designs with
opaque encapsulation, total ISC_P is zero, so no consideration
of αLR is needed. However, in the proposed NIR-based neural
recorder, it is critical to implement a high RFB in the neural
amplifier chain while simultaneously achieving a high αLR,

a feat that is very challenging. The proposed neural recorder
is designed with the consideration of αLR in every building
block to achieve overall light robustness of the system.

III. CIRCUIT IMPLEMENTATION

A. RP SD-Less Neural Amplifier

A pseudo resistor, RPSD, is frequently used for dc biasing
or feedback of the amplifier [Table I (left)] of a miniaturized
neural recording IC [15], [16] since it can easily achieve over a
few T� of high impedance with only a few transistors, which
results in an overall compact layout area. However, RPSD not
only has poor process sensitivity but also cannot avoid an
extremely low αLR [Table I (left)]. With RPSD, the dc-bias
level drifts at <1 μW/mm2of light intensity in simulation,
whereas we need RFB that can sustain at least 150 μW/mm2of
light intensity.Light tolerance of RPSD-based structure can
be improved using photo-induced current compensation tech-
nique [26]; however, the high process sensitivity of RPSD still
remains as the main challenge using RPSD as RFB. Another
RFB type adopting a series-to-parallel switched capacitor was
introduced in [27] and improves process sensitivity. Due to its
higher GFB, the series-to-parallel switched capacitor achieves
significantly higher αLR than RPSD; however, its high number
of switches results in a large total junction area and high ISC_P,
and thus, αLR is still too low (Table I, middle). In this work,
we designed a 3× voltage attenuator and increased the input
and the feedback capacitor by the same factor to maintain fHP

similar to the series-to-parallel switched-capacitor approach,
as shown in (3) and (5)

fHP,s−to−p Cs = 1

2π
·
(

Cs fCLK

10

)
· 1

Cn

=
(

1

20π

)
·
(

Cs

Cn

)
· fCLK (3)

GFB,s−to−p Cs =
(

1

10

)
· Cs fCLK (4)

fHP,proposed = 1

2π
·
(

Cs fCLK

3

)
· 1

3Cn

=
(

1

18π

)
·
(

Cs

Cn

)
· fCLK (5)

GFB,proposed = Cs fCLK. (6)

While maintaining a similar level of fHP, the proposed
approach achieves around 10× GFB compared with series-
to-parallel switched-capacitor-based approach, as shown
in (4) and (6), while having a lower ISC_P resulting in
a 5 × 104× and 46× improvement in αLR compared with
RPSD-based and series-to-parallel switched-capacitor-based
approaches, respectively (Table I).

In this work, we propose a three-stage neural amplifier
composed of an LNA followed by two programmable-gain
amplifiers (PGAs) [Fig. 5 (top)]. The gains of the LNA
and feedback attenuators of LNA and PGA1 are set by the
transconductance (gm) ratio as shown in the bottom of Fig. 5
to avoid large area occupation of capacitors in the conven-
tional capacitive amplifiers [28]. Operational transimpedance
amplifier (OTA) in [28] with an inverter-based input stage is
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TABLE I

SIMULATED LIGHT ROBUSTNESS OF THREE DIFFERENT FEEDBACK RESISTORS

Fig. 5. Proposed light robust neural amplifier chain.

implemented with cascode N/PMOS transistors included in
both input and output stage of the OTA [Fig. 5 (bottom)]. In the
subthreshold region, gm is proportional to bias current, and
therefore, the OTA gain can be accurately controlled by bias
current ratio of input and output stage. Power consumption
of each attenuator is 19.4 nW (5.4% of the total amplifier)
providing sufficient bandwidth for constant attenuation across
the main signal bandwidth, whereas noise contribution of the
attenuators is negligible compared to the thermal noise of
effective RFB located at the same noise transfer path of the
attenuators. Area overhead of the proposed structure mainly
comes from the MIM and MOM combined input capacitor C1

(6.9 pF), while C2 and C3 are only 0.4 and 2.5 pF, respectively
(Fig. 5). The amplifier achieves 23 M� of input impedance
at 1 kHz, which is an order of magnitude larger than the
1-kHz impedance of the carbon fiber electrode, which varies
from sub-M� for short-term implant to few-M� for long-term
implant [18].

The differential-to-single-ended PGA2 implements a simple
switched-capacitor resistor for RFB to set fHP of the overall
transfer function of the amplifier chain. In PGA2, the proposed
3× feedback attenuator + 3× input and feedback capacitor
scheme are not required since the simple switched-capacitor
resistor already satisfies high αLR and the target fHP. PGA2
also operates as a gm-C filter that sets a low-pass corner
frequency ( fLP) of the amplifier chain. As the amplifier
operates in the sub-threshold region, the transconductance is
defined as follows:

gm = IDS

nVT
(7)

where IDS, n, and VT are the drain-to-source current, sub-
threshold slope, and thermal voltage, respectively. IDS is
set by IREF generated by the switched-capacitor-based Gm

biasing circuit; therefore, it is proportional to the switching
capacitance, CSW, and frequency

IDS = m · IREF = k·CSW · fCLK. (8)

From (3) and (4), the bandwidth of the gm-C filter is precisely
defined by the capacitance ratio and clock frequency

fLP = gm

CL
=

(
k

nVT

)
·
(

CSW

CL

)
· fCLK. (9)

Therefore, both fHP and fLP are set by the capacitance ratio
and fCLK recovered from the CDR. Amplifier dc offset is
canceled from stage to stage by ac coupled capacitors, while
the inner stage input offset is mitigated by the feedback loop
gain.

B. Neural Feature Extraction Unit

Given the extremely small power budget, we focus on
the low-bandwidth neural feature called SBP for the motor
function decoding to minimize the power consumption.
In a conventional approach, SBP, which is defined as the
absolute average of signal amplitude in the 300–1000-Hz band
[21]–[23], is extracted using high-power ASICs to record a raw
high-bandwidth neural signal and then filter it in the digital
domain and perform absolute integration (Fig. 6). Instead,
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Fig. 6. (a) Conventional approach of extracting SBP. (b) Proposed approach
of extracting SBP.

we introduced an energy-efficient and compact on-chip SBP
extraction in the analog domain using the charge integration
described in [16]. However, the analog domain SBP extractor
in [16] relies on only tens of pA of on current to charge
an integration capacitor, which is susceptible to ISC_P. In this
work, we propose an area- and energy-efficient, light-tolerant
digital SBP extraction unit using a 2.8-bit flash-ADC and
pulse-counter-based integrator, as shown in Fig. 7(a). The
proposed unit consists of a VREF generator implemented with
a diode stack (12 nA in simulation) and dynamic compara-
tors operating with staggered clock signals with six different
phases, followed by pulse generators. Due to the staggered
clock signals with six different phases, all the evaluation edges
(EV[5−0]) are non-overlapped. Therefore, the time-domain
integration of the absolute amplitude could be done by simply
combining six output pulses [P[0−2] and N[0−2] in Fig. 7(a)] by
logic gates and counting them by a single shared asynchronous
counter. As a result, the total quantized area of the AMPOUT
signal in Fig. 7(b) is encoded in the time interval as the
LED_EN, which triggers the firing of an LED packet for data
uplink. The threshold count NTH in Fig. 7(a) can be updated
to control the gain of the SBP extraction unit. All the compo-
nents, including the VREFgenerator, the dynamic comparators,
and the digital circuits implemented with standard cells, meet
the high αLR standard for light-robust operation. The dynamic
comparators and digital standard cells have high drivability
during the transition phase and strong retention in steady state
significantly enhancing the light tolerance. VREF generator is
designed with sufficient supply current of 12 nA at the typical
corner and 2.7 nA at the worst corner (simulation) to handle
sub-nA level of total ISC_P with enough margin. The process
variation and mismatch impact of the output voltage of VREF

generator on overall decoding performance and SBP extraction
is minimized by two main factors. First, the decoding accuracy
and SBP are highly correlated with the input spiking rate rather
than the linearity of the signal amplitude. In addition, a single
step of the quantized voltage, �V in Fig. 7(b), is 130 mV,
whereas its standard deviation across both process variation
and mismatch is 6.2 mV (Monte Carlo (MC) simulation with
1000 samples) minimizing linearity degradation.

C. Optical Receiver

An ORx is a key component for data downlink converting
ac modulation of the NIR light intensity to the digital sequence

Fig. 7. (a) Proposed SBP extraction unit and (b) quantization of absolute
amplitude and width from the SBP extraction unit.

that is needed for CDR. The main challenge of ORx is
to receive low-frequency data modulated through the supply
without having any low impedance path that is susceptible
to light (poor αLR). In this work, we propose a novel ORx
utilizing a high-pass filter whose cutoff frequency is much
higher than the modulation data rate by combining it with
the hysteresis comparator. The ORx is composed of dual
2T-VRs [29]: one ac-coupled to VDD and another to ground
and a hysteresis comparator (Fig. 8). The 2T-VRs are sized for
1.4 nA of current in simulation to ensure high αLR, and the
RC-time constant is set much shorter than the light modulation
period but, still longer than the time constant of the hysteresis
comparator. Therefore, the proposed ORx fetches the input
modulation and maintains the output value until the next
toggle.

D. Pulse-Gap Modulator and LED Driver

The data transmission block, including PGM and an LED
driver, receives the output of the SBP extraction unit and
emits light using LED to the repeater unit. PGM encodes
the 10-b random chipID [17] and 6-b AFE gain configuration
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Fig. 8. Proposed dual 2T-VRs and hysteresis comparator-based ORx.

Fig. 9. (a) Proposed PGM and LED driver. (b) SIM and PGM.

(3 b for the amplifier and 3 b for the SBP extraction unit),
17 pulses total where the 16 pulse gaps of either 2TCLK or
3TCLK stand for data 0 or 1, respectively (Fig. 9). The 6-b
AFE gain configuration in the uplink LED packet lets the
external users know the current gain status and acts as an
indicator of successful data recovery, which will be covered in
Section III-E.

The custom LED [19] requires mA-level driving current to
maximize external quantum efficiency (1% EQE at 0.1 mA and
2% EQE at 1 mA) and to maximize the detection rate of the
repeater. However, the supply current of the chip is limited
by the short-circuit current that the PV cell can generate
(ISC = 1.1 μA at 150 μW/mm2of NIR light [19]). Therefore,
we slowly charge three capacitors in parallel during the LED
off time and up-convert the voltage using the series connection
of three capacitors to provide instinct high driving voltage and
current on LED (VLED,PK = 2.15 V and ILED,PK = 3.73 mA
in simulation). The proposed PGM provides 2TCLK of long
capacitor charging time of the LED driver, and this helps the
LED driver to reduce the charging current level. LED_EN
from the SBP extraction unit toggles the 17 PGM LED light
pulses, and the extracted SBP is encoded in the time interval
between two adjacent LED_EN signals or two LED packets

Fig. 10. Proposed CDR block.

[Fig. 9(b)]. This modulation scheme is referred to as PGM-
based symbol-interval modulation (PGM-SIM).

E. Clock and Data Recovery

In Fig. 10, a block diagram of the proposed CDR is intro-
duced. In the power-ON reset phase, a default clock generator
sends out default clock to the overall system, and the system
enters the clock recovery phase. With the external NIR light
modulated at a constant frequency of 8 kHz, the clock recovery
block calibrates the digitally controlled oscillator (DCO) with
a 4-b thermometer-coded control scheme to match the received
modulation period with the DCO period (Fig. 10). After the
DCO frequency is calibrated, the LOCK signal rises and
switches the system clock from the default to the recovered
clock using glitch-free multiplexers.

After the clock recovery phase, the system functions nor-
mally with the data recovery triggered whenever the passcode
is received. The repeater unit programs the system by mod-
ulating the NIR light intensity with a PWM scheme, and it
sends a total of 37-bit data composed of 18 bit for passcode
and 19 bit for the system configuration (Fig. 10). There are two
types of passcodes implemented: global and local. A global
passcode is an 18-bit, fully hardwired code that is identical
for every recording chip. Therefore, if the repeater sends out
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Fig. 11. Die photograph.

Fig. 12. (a) Measured amplifier ac performance and (b) output noise power
spectral density.

a particular configuration with the global passcode, all the free-
floating motes under the receiver update their configurations
to the identical setup with single programming. On the other
hand, a local passcode is composed of an 8-bit preamble
plus 10-bit random chipID [17]. This allows individual remote
gain control (RGC). Depending on the obtained neural signal
magnitude at each mote, the repeater layer can program an
individual chip without affecting other motes. This RGC
capability enables flexible channel gain adaption, for instance,
off-chip-level automatic gain control (AGC) by monitoring the
average LED firing rate of every channel.

IV. MEASUREMENT RESULTS

The proposed light-tolerant neural recording IC was fabri-
cated in 180-nm CMOS (Fig. 11). The chip can fully function
under 300 μW/mm2of NIR optical power density, which
exceeds the target optical power density for the real application
(150 μW/mm2). AFE performance was measured with a bare
die exposed to NIR light, and a wireless measurement was
performed by using a commercial NIR light source for power
transfer and downlink. A commercial SPAD was used to
receive uplink signals sent by the LED. In this setup, the
proposed IC was wire-bonded with a custom PV/LED GaAs
chip side-by-side without any other tethering wires. In addi-
tion, in vivo measurements were performed by connecting
a carbon fiber inserted into the brain of an anesthetized
Long Evans rat. Furthermore, a 20-channel prerecorded motor

Fig. 13. (a) Measured peak gain and (b) high-pass corner sweeping NIR
light intensity.

Fig. 14. Measured transient waveform of the SBP extraction unit under
300-μW/mm2 NIR light.

TABLE II

MEASURED AMPLIFIER AC PERFORMANCE

cortex signal acquired by Utah microelectrode arrays was
provided to the chip after the proper attenuation to emulate
the in vivo measurement. Then, the finger movement of a
monkey was predicted using the resulting SBP produced by the
proposed IC.

A. AFE Performance Under Bare Die Exposure to NIR Light

For AFE performance validation, the bare die was exposed
to a commercial 850-nm light source (IRS4, CMVision) and
the measurement was performed in a temperature chamber
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TABLE III

COMPARISON TABLE

Fig. 15. (a) Wireless optical setup diagram. (b) Side view photograph of the
wireless optical setup inside temperature chamber. (c) Top view photograph
of the external light source and SPAD.

maintaining 38 ◦C. The amplifier achieves 68-dB peak
gain with an SBP bandwidth range of 380–1060 Hz under
150-μW/mm2 NIR light, which is sufficient to amplify and
filter hundreds of μVpk−to-pk of input neural spike in interest
and to fully utilize the available voltage headroom of the chip.
The common-mode rejection ratio (CMRR) and power supply
rejection ratio (PSRR) were higher than 67 dB. The measured
input-referred noise (IRN) was 6.2 μVrms. The difference of
the measured performance was negligible when the 850-nm

Fig. 16. Measured local programming with the fully wireless optical setup.

NIR light source with the target NIR optical power density
of 150 μW/mm2 is turned on and off (Fig. 12 and Table II).
Fig. 13 shows the measured peak gain and fHP across the
NIR light intensity level for an RPSD-based baseline and
the proposed structure. While the baseline structure failed
at 8 μW/mm2, the proposed structure remained stable up
to 300 μW/mm2.

Fig. 14 shows the measured transient waveform of the fully
functioning AFE with the 300-μW/mm2 NIR light turned
on. The pre-recorded motor cortex signal of a monkey was
streamed into the chip using an arbitrary waveform generator
(AWG; Keysight, 33600A) and a 1000-to-1 on-printed circuit
board (PCB) attenuator. AMPOUT at the second row is the
output of the amplifier and, at the same time, the input of the
SBP extraction unit. P[0−2] and N[0−2] are the outputs of the
six pulse generators in Fig. 7. The LED_EN signal is the final
output of the SBP extraction unit. The proposed computing
unit consumed 29.5 nW in simulation while occupying only
0.045 mm2.

B. Wireless Optical Measurement

To validate the wireless optical function, the proposed IC
was wire bonded to the custom PV/LED GaAs chip [19]
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Fig. 17. Measured data uplink with the fully wireless optical setup.

and measured with the fully wireless optical setup including
850-nm laser (QFLD850200S, Qphotonics) for NIR powering
and data downlink. An SPAD detector was used for uplink
reception (SPDOEMNIR, Aurea) (Fig. 15). The measured
transient waveform of the optical downlink using PWM of
the external light is presented in Fig. 16. The VDD node was
monitored through the on-board analog buffer and plotted in
the second row of Fig. 16 while modulating 850-nm light
intensity between 500 and 0 μW/mm2. Note that CDR (32 ms
for CR and 70 ms for DR) occurs only once at start-up or very
infrequently staying most of time in nominal operation phase
under 150 μW/mm2; therefore, 500-μW/mm2 peak modula-
tion density for CDR does not impact tissue overheating. ORx
captures and translates the VDD modulation into the digital
signal. When it detects the 18-b local programming passcode
(8-b preamble + 10-b chipID), the VALID signal rises, and
the data recovery of the 19-b chip configuration is executed.

With the identical optical setup in Fig. 15, the wireless data
uplink functionality was validated (Fig. 17). The pre-recorded
motor cortex signal of a monkey was streamed into the chip
using an AWG (Keysight, 33600A) and a 1000-to-1 on-PCB
attenuator (plotted as VIN in Fig. 17) to set the amplitude
of the neural signal before amplification. LED_FIRE in the
second row of Fig. 17 is the chip internal signal that triggers
the firing of the PGM LED packets (Fig. 9); the time interval
between adjacent packets was inversely proportional to the
average SBP. In other words, when there is active neural
activity, the LED packets are fired more frequently. The
internal LED_FIRE signal was measured through the digital
monitoring buffer as a baseline to validate the wirelessly
measured uplink signal. The SPAD output (the third row
in Fig. 17) is the measured photon detection result from
the SPAD detector, including true photon counts received
from the actual LED and the intrinsic dark counts (Fig. 17).
Using the 16-b-PGM LED pattern, the wirelessly measured
SPAD Output was matched filtered in MATLAB, and the
decoded LED_EN in the last row in Fig. 17 matched exactly
with the baseline (LED_FIRE), successfully rejecting the dark
counts.

Fig. 18. (a) In vivo measurement setup photograph. (b) Setup diagram.
(c) Measured transient waveform.

C. In Vivo Measurement

All procedures complied with the guidelines of the Uni-
versity of Michigan’s Institutional Animal Care and Use
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Fig. 19. Finger movement decoding result. (a) Predicted finger position and velocity. (b) Average LED firing rate histogram. (c) Position and velocity
prediction accuracy.

Committee. The AFE functionality was verified in vivo using
a carbon fiber inserted into the motor cortex of an anesthetized
Long Evans rat [Fig. 18(a) and (b)]. A bare carbon fiber
(d = 6.8 μm) was mounted on a daughter PCB using silver
epoxy. The fiber was then Parylene C coated (t = 800 nm),
the tip re-exposed, and coated with PEDOT:pTS to lower
the impedance. The inserted carbon fiber was electrically
connected to the input [VIN in Fig. 18(b)] of the proposed
chip on a motherboard and a commercial high-power neural
recording system (RA 16AC headstage, RA16PA pre-amp
and RX7 stimulator base station, TDT Inc.) simultaneously.
A bone screw, serving as ground for both recording systems,
was placed at the most posterior portion of the skull and
was also electrically connected to the proposed IC and the
commercial recording system in parallel [REF in Fig. 18(b)].
The proposed SBP was decoded from the time interval of
the measured LED_EN signal, while the conventional SBP
was calculated in MATLAB using the raw data acquired
by the commercial recording system (high-pass filtered at
2.2 Hz by the headstage, anti-aliased filtered at 7.5 kHz,
and sampled at 24.414 kHz). The SBP acquired using the
proposed IC achieved a correlation coefficient of 0.797 to the
conventional SBP.

D. Motor Prediction With the Pre-Recorded Neural Signal

The 1-D finger position and velocity of a monkey were
predicted using a 20-channel prerecorded motor cortex signal
and the resulting SBP from the IC with both fixed gain
and off-chip RGC (Fig. 19). A Kalman filter (KF) was used
for training and prediction [21]–[23]. The first 100 s of
the measured SBP and prerecorded finger movement was
used for training, and the next 24 s of the finger movement
was predicted with the trained KF and the measured SBP.
In Fig. 19, three predicted finger positions are compared
with the actual finger movement. The conventional SBP was

Fig. 20. (a) Area and (b) simulated power breakdown.

obtained from bandpass filtering and absolute averaging on
the raw prerecorded neural signal measured from a high-
power analog front end in MATLAB [21]–[23]. The proposed
SBP measured by the chip successfully predicts the finger
position/velocity with a correlation coefficient of 0.864/0.492
with a fixed gain configuration across 20 channels, indicating
only small accuracy degradation compared to the high-power
conventional SBP method achieving 0.889/0.616 [Fig. 19(c)].
With the RGC, the gain configuration of each channel case was
updated to optimize the average LED firing rate by increasing
the gain for the channel case when the average LED firing
rate was too low and vice versa [Fig. 19(b)]. With the off-
chip RCG, the proposed SBP achieved a prediction correlation
coefficient of 0.870/0.569 [Fig. 19(c)], and the LED firing rate
remained below 50 Hz across all the channels, allowing for
increased channel utilization.

V. CONCLUSION

This article proposes a light-tolerant wireless neural record-
ing IC for motor prediction with NIR-based power and data
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telemetry, addressing a unique challenge of light-robust low-
power circuit design. The proposed IC can fully function under
300 μW/mm2 of light exposure, due to its RPSD-less AFE
design and novel digital SBP extractor, whereas other state-
of-the-art optical-based standalone recorders [15], [16] do not
consider light tolerance in their designs. The proposed recorder
achieves the lowest power consumption of 0.57 μW at 38 ◦C
with 4.1 noise efficiency factor (NEF) with an active area of
0.19 mm × 0.28 mm (Table III, Fig. 20). The IC supports
optical powering and bi-directional data telemetry along with
a vertical stacked dual-junction PV and LED GaAs chip [19];
11 pF of on-chip MIM decoupling capacitors and 27 pF of
intrinsic PV cell capacitance minimize random fluctuation of
VDD, while AFE achieves high PSRR above 67 dB to prevent
power supply noise coupling. SBP, the neural feature of inter-
est, is on-chip extracted and fired out to a repeater through the
custom LED with PGM-SIM uplink signal. The data downlink
is performed by PWM optical modulation, while sufficient
hysteresis voltage (VIH–VIL, 91 mV, simulated) of the ORx and
hardwired passcode in CDR prevents false trigger and false
data downlink from random VDD fluctuation. In addition, the
RGC capability with the individual mote downlink provides
the potential for future systematic optimization (i.e., off-chip
AGC) of the channel utilization and decoding accuracy when
multiple motes are implanted. We expect full integration of
the implantable floating mote with the proposed IC and other
components in the future, enabling true wireless long-term
neural recording with minimum risk of brain tissue damage.
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