
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 4, APRIL 2021 1071

An Ultra-Low-Power Image Signal Processor for
Hierarchical Image Recognition With

Deep Neural Networks
Hyochan An , Student Member, IEEE, Sam Schiferl, Siddharth Venkatesan, Tim Wesley,

Qirui Zhang, Graduate Student Member, IEEE, Jingcheng Wang , Member, IEEE,

Kyojin D. Choo , Member, IEEE, Shiyu Liu, Bowen Liu, Graduate Student Member, IEEE,

Ziyun Li , Member, IEEE, Luyao Gong, Hengfei Zhong, David Blaauw , Fellow, IEEE,

Ronald Dreslinski, Senior Member, IEEE, Hun Seok Kim , Member, IEEE,
and Dennis Sylvester , Fellow, IEEE

Abstract— We propose an ultra-low-power (ULP) image signal
processor (ISP) that performs on-the-fly in-processing frame
compression/decompression and hierarchical event recognition to
exploit the temporal and spatial sparsity in an image sequence.
This approach reduces energy consumption spent processing and
transmitting unimportant image data to achieve a 16× imaging
system energy gain in an intruder detection scenario. The ISP
was fabricated in 40-nm CMOS and consumes only 170 µW at
5 frames/s for neural network-based intruder detection and 192×
compressed image recording.

Index Terms— Deep neural network (DNN), energy-efficient
processor, event recognition, image compression, image signal
processor (ISP).

I. INTRODUCTION

THE Internet of Things (IoT) is ubiquitous in many
applications, such as smart homes, smart cities, and

smart agriculture [1]. Battery-operated millimeter (mm)-scale
IoT devices are desired solutions for embedding sensors in
physical spaces due to their wireless operation and tiny form
factor [2]. Imaging is a highly desirable sensing modality in
these devices as it offers key contextual information about
a system’s environment. However, imaging requires a large
amount of energy and storage space, creating challenges for
mm-size systems.

Prior IoT imaging systems suffer from energy and storage
size problems due primarily to the following two reasons:
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1) many computer vision processors, such as [3]–[6], process
uncompressed images, which necessitates a large frame buffer,
thereby increasing the chip size and leakage power and
2) since many real-time image signal processors (ISPs), such
as [7], [8], lack scene understanding, they cannot distinguish
useful information, and all frames must be transmitted regard-
less of their importance, incurring considerable storage and
wireless communication energy costs.

We found an opportunity to save energy by catering a
system’s data-path to the event frequency of a certain environ-
ment. For example, surveillance cameras in smart homes and
offices tend to capture redundant images, such as unchanged
background scenes, moving pets, or family members for most
of the operation time, as depicted in Fig. 1(a). Recognizing
and discarding unimportant images early in the computa-
tional pipeline allow the system to avoid expending energy
on processing and transferring unimportant data. Given the
expensive wireless data transmission and off-chip storage of
battery-operated IoT devices, reducing the amount of data
transmission required to ensure that the necessary useful infor-
mation is transferred could optimize system energy, as shown
in Fig. 1(b).

Therefore, we propose an ultra-low-power (ULP) ISP
designed for size-constrained intelligent edge devices,
as shown in Fig. 1(c). First, to reduce the required size
of storage for frames, we employ macroblock (MCB)-based
scene change detection (CD) using a new sparse census-
transform encoding and JPEG compressed memory for input
images. The proposed scheme ensures that full uncompressed
images are never stored in their entirety on-chip. This reduces
the required SRAM size needed to store frames on the chip by
11.2× and the leakage power by 26.9×. Second, to understand
the scene, we enable hierarchical event recognition through
a programmable deep neural network (DNN) engine and a
change detection engine (CDE), which progressively prunes
uninteresting areas or the entire image. Since relevant infor-
mation typically occurs sparsely in time and space, image
storage and transmission requirements can be reduced by
>1000×. Third, to reduce the size of storage required for
algorithm parameters, DNNs use deep compression of all
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Fig. 1. Motivation for image processing intelligence at the edge embedded imaging systems. Taking advantage of sparsity in an image sequence can reduce
the overall energy consumption of the embedded imaging system. (a) Sparsity in an image sequence. (b) Energy of an embedded imaging system. (c) Edge
intelligence for an embedded imaging system.

on-chip weights stored in a custom ultra-low-leakage SRAM,
further reducing the system size and power consumption.
Fourth, an H.264 engine compresses the final detected regions-
of-interest (RoIs), and the chip achieves a 192× total image
size reduction ratio to reduce off-chip data transfer. In addition,
all features of the ISP are highly flexible because it must adapt
to the specific event frequencies of many different real-life
environments.

The rest of this article is organized as follows. Section II
introduces the overall architecture of the proposed ISP. Sec-
tion III provides an example use scenario of the ISP. The
three main innovations are illustrated in Sections IV–VI.
Section VII shows the additional techniques used in the chip.
The fabricated chip and measurement results are presented in
Section VIII. Section IX concludes this article.

II. ARCHITECTURE

Fig. 2 provides an overview of the top-level architecture of
the proposed ISP design. The ISP consists of three customized
IPs: an image streaming engine (ISE), a neural engine (NE),
and an H.264 engine (H264E).

The ISE block processes streamed-in images on the fly.
First, while a Bayer format image is streaming in from an
imager [9], the pixels are calibrated using the optical black
intensity of the front/back porch of the frame. The CDE
performs customized MCB (16 × 16 pixels)-based CD on
the calibrated image data. Following the operation, the IP
performs de-Bayering and RGB-to-YUV converting on the
changed MCBs. The MCBs are compressed into the JPEG
compression memory. While each MCB has a variable length
due to JPEG compression, they can be randomly accessed on
demand.

The NE enables efficient DNN-based image recognition.
The NE has a processing element (PE) to accelerate DNN
operations. The NE control executor (NCX), a custom RISC
processor, controls the operation of the PE by executing
instructions programed in the NE instruction memory. The
NE shared memory serves as the main storage for com-
pressed DNN weights and also the scratchpad memory for
input–output activations of layers.

The H264E performs customized H.264 intra-frame com-
pression on an arbitrary (non-rectangular shaped) subset of

Fig. 2. Architecture of the proposed ISP.

MCBs. The H264E controller automatically collects target
MCBs and the boundary pixel information from the ISE
block. The prediction and reconstruction engines find the best
prediction mode and compress the target MCB with it. The
compressed bitstream is transferred off the chip through the
serial interface.

An ARM Cortex-M0 orchestrates all the blocks via the AHB
bus by executing programs from the M0 instruction memory.
The ISP has an MBUS interface [10] for communicating with
other chips and the initial programming.

All logic operates in a power-gated 0.6-V domain. The
memory banks of the chip have software-controlled separate
power-gating switches to optimize system leakage when the
ISP is in sleep mode without losing retentive data, such as
DNN weights, Cortex-M0, and NE instructions, and refer-
ence frame data. The power-gated design enables the ISP to
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Fig. 3. Use scenario of the proposed ISP enabling hierarchical image recognition. The ISP avoids expending energy on unimportant portions of the incoming
frames by screening them out early in the processing pipeline. (a) Example use scenario of the proposed ISP. (b) Operation energy of active functional blocks.

consume only 24 μW while retaining the abovementioned data
in the SRAM.

III. USE SCENARIO

We demonstrate the use of the proposed ISP for intruder
detection and recording, as shown in Fig. 3(a). A companion
imager chip triggers in response to motion detection [9] to
input a sub-sampled image (32 × 20 pixels × 1 channel,
programmable size empirically chosen for the target ULP
person detection accuracy) into the ISP chip. To determine
if the sub-sampled image contains a person, the NE performs
DNN-based person detection (NE consumes 14.4 μJ). Then,
the ISP requests a full Bayer (interleaved RGB) formatted
VGA (640 × 480 pixels) frame from the imager if a person
is detected. As the VGA image streams in, the ISP performs
on-the-fly MCB-based CD against a previously captured ref-
erence frame and compresses the changed blocks using JPEG
compression (CDE consumes 2.32 μJ/frame with typical 12%
change). Once the ISP has received the whole image, the NE
runs DNN-based face detection, which sweeps the region of
the changed MCBs on two scales (1× and 2× subsampling)
with 16-pixel stride (NE consumes 255 μJ). If the NE detects
a face (or multiple faces) in the changed region, then the NE
runs DNN-based facial recognition (NE consumes 222 μJ)
to determine if the face is registered. In the event that the
NE does not recognize the face, only change-detected MCBs
(not all MCBs) are compressed using H.264 and stored in
off-chip flash or radio transmitted. With an average of 12%
change-detected MCBs and a 23× H.264 compression ratio,
the ISP achieves 192× overall size reduction for a VGA frame
with 28.3-dB PSNR and only transmits those MCBs with
unregistered face information. Once the ISP either finishes
transmitting the important portions of the frame or deter-
mines that the entire frame is unimportant, it returns to the
person-detection step awaiting motion detection trigger at the
imager. Fig. 3(b) shows the energy consumption of the active
functional blocks for the above-proposed scenario.

By using hierarchical image recognition, we take advantage
of the sparsity of new information across an image sequence.
The person detection and facial recognition steps allow us to

discard unimportant scenes entirely (temporal sparsity), while
the CD and face detection isolates the important parts of
the image (spatial sparsity). This helps decrease imaging and
image transfer energy as the ISP only requests the full image
when a person is detected on the subsampled image. Further-
more, this helps reduce flash storage and radio transmission
energy consumption.

In addition to the above example scenario, the ISP can adapt
to different use-cases and environments by reprogramming
to modify the type of information to send off-chip and the
specific image recognition DNNs used.

IV. COMPRESSION OF MEMORY-INTENSIVE DATA

This section introduces the compression techniques of
memory-intensive data entities. The ISP requires a large
on-chip memory to store frames and algorithm parameters
for intelligent image processing. To reduce the SRAM size
and, thereby, reduce leakage, we extensively employed data
compression. Especially, the input image data, DNN weights,
and output image data are all stored or transmitted in com-
pressed format. The combined techniques reduce the on-chip
SRAM size by 5× (from 45 to 9 Mbit) and total leakage power
by 9.36×, which includes 2.4× leakage power reduction
via a custom-designed 0.3-V bitcell/0.6-V peripheral SRAM
array [11] with 8σ hold margin.

A. Compression of Input Image

On-the-fly JPEG compression is performed on the
streamed-in image, achieving an 11.2× reduction in the
required memory size (from 7.4 to 0.66 Mbit) to store two
VGA frames (reference and current frames) with 34-dB PSNR.
The proposed MCB-based JPEG algorithm and the memory
architecture minimize redundant data processing. The 16 ×
16 pixel MCB size is chosen because it is a multiple of JPEG
and H.264 unit block sizes (8 × 8 and 4 × 4) and also large
enough to capture perceptible image features.

The JPEG codec is customized to remove inter-dependence
between the MCBs. In Fig. 4(a) illustration, only B0–B3
(8 × 8 pixels) of an MCB have a dependence, which allows
MCB-wise compression and decompression. It provides two
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Fig. 4. Proposed compression scheme of input image using single
MCB-based JPEG. (a) Customized single MCB-based JPEG. (b) Proposed
JPEG compression memory.

significant benefits. First, since the ISE only compresses
change-detected MCBs using JPEG, non-rectangular portions
of a changed image can be compressed and stored without
redundancy. Second, the other IPs, such as the H264E and NE,
can access an arbitrary MCB in the RoI without decompressing
the entire frame.

We designed the JPEG compression memory using a
pointer-based data structure to accommodate the variable
length of the compressed MCBs, as shown in Fig. 4(b).
While MCBs are JPEG encoded with a tunable quality factor,
the pointer of each MCB contains the starting address of the
compressed MCB and the size of four JPEG compression
units, C_B0–C_B3. The other IPs can access arbitrary MCBs
in raw uncompressed format with natural (fixed-length) block
addressing as the decompression happens on the fly. For read-
ing an arbitrary MCB in the current frame, the decompression
engine first checks if the MCB to be read is flagged as
changed. If so, the MCB of the current frame is decompressed
and loaded by referring to the pointer table. Otherwise (the
MCB is unchanged), the MCB at the same position of the
reference frame is loaded as the proxy of the current frame
MCB (not stored in SRAM).

B. Compression of Neural-Network Weights

DNN weights are compressed and stored in on-chip mem-
ory. The compressed DNNs are decompressed on the fly when
needed by a certain layer. As shown in Fig. 5, we adopted
deep compression techniques to optimize the precision and
the number of non-zero weights [12]. The value of a non-zero
weight and the run length to the next non-zero weight are
separately Huffman-encoded. For sparse convolutional layers,
each run-length coded non-zero weight requires 13 bits (8-bit

Fig. 5. Proposed compression scheme of neural-network weights. (a) Weight
compression scheme. (b) Compression result of three neural networks.

Fig. 6. Proposed H.264 intra-frame compression scheme of output image.

weight value and 5-bit run length). The Huffman coding
reduces it to 2.47–5.2 bit per non-zero weight. To program
sparse convolution weights, a set of convolution kernels are
grouped and padded together to form a 512-bit loading unit.
This grouping is to increase the area efficiency of the custom
ULL SRAM macro and to enable high utilization of the
multiplier-and-accumulator (MAC) array. With the density
specified in Fig. 5, the overall encoding scheme achieves 3.4×
size reduction from 8 to 2.3 bit per weight on average for all
convolutions layers in three neural networks. This includes
the overhead of SRAM word padding, as well as the storage
for Huffman table and tree structure data. As for the sparse
fully connected layer, an index-based encoding, described in
Section VI-B, is adopted to achieve 1.5× size reduction.
With this compression, all three neural networks achieve <1%
accuracy degradation compared with uncompressed networks.
The compressed weights for all three DNNs used in the
intruder detection scenario (680 kbit for person detection,
850 kbit for face detection, and 1.9 Mbit for face recognition)
are stored on the chip.

C. Compression of Output Image

The H.264 intra-frame compression algorithm reduces the
size of the bits to be transferred off-chip. With an average
of 12% change-detected MCBs and 23× H.264 compression
ratio, the ISP achieves 192× overall size reduction for a VGA
frame with 28.3-dB PSNR. The algorithm is customized for
hardware efficiency.

Fig. 6 shows the proposed H.264 intra-frame compression
of an output image. The customized H.264 algorithm reduces
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Fig. 7. Proposed MCB-based CD algorithm using sparse census transform
encoding. The pixel pair map is a set of pre-configured randomly selected
32-pixel pairs between the top eight rows (A, red) and the bottom eight
rows (B, blue) of an MCB. The large dilation pattern improves coverage
performance at the cost of increased false detection. The same re-configurable
parameters (pixel pair map, denoising threshold, decision threshold, and
dilation pattern) are commonly applied to all MCBs.

the number of MCBs required from the JPEG compressed
memory for the H.264 intra-mode prediction by interpolating
the upper left corner pixel and skipping Diagonal Down Left
and Vertical Left prediction modes. This reduces the number of
required MCBs by 2.6× with negligible loss (<0.1-dB PSNR)
when the changed MCB ratios are 12% of cases. In addition,
the customized algorithm enables the arbitrary shape of RoI
to be compressed/decompressed.

V. SPATIAL IMAGE PRUNING USING CDE

This section introduces the spatial image pruning using the
CDE. We propose a sparse census pattern-based CD algo-
rithm and optimized hardware for processing the algorithm
on streamed-in pixels effectively. The combination detects the
changed region with low overhead and narrows down the RoI
to process.

A. MCB-Based Scene CD Algorithm

The CDE performs a proposed CD at the MCB level of
Bayer (interleaved RGB) images for spatial pruning, as shown
in Fig. 7. First, the CDE encodes each 16 × 16 pixel MCB
(3072 bit) of a reference image into a 64-bit pattern vector.
Each element of a pattern vector is the ternary comparison
result of two pixels’ intensities at predefined positions of the
MCB specified as the pixel pair map (same for all MCBs).
The tunable denoising value is used for thresholding the
comparison result. This new sparse census transform encoding
is tolerant of uniform illumination change. For every newly
streamed-in image, a 64-bit pattern vector is prepared and
compared with that of the reference image. The CDE flags
an MCB as changed when the Hamming distance between
two vectors exceeds a tunable threshold. To improve coverage,
the flagged MCBs are also dilated (neighboring MCBs are
flagged in a tunable manner). At the same time, only flagged
MCBs are JPEG compressed by the JPEG compression mem-
ory block, which is described in Section IV-A. Note that the
system can be reprogrammed with a newly captured reference
image when the environment changes.

The proposed CD algorithm achieves 95% coverage and a
5% false positive rate on CDnet [13], as shown in Fig. 8.

Fig. 8. Evaluation of the proposed CD algorithm. “P” specifies the number
of pixel pair in an MCB. P = 32 means that 32 pairs of pixels of an MCB
are used for generating pattern vector. CDnet is used for evaluation [13].
(a) Example images of CD algorithms. (b) Performance of CD algorithms.

Fig. 9. Proposed buffered MCB-streaming of CDE and the FSM of MCB
line buffer.

The denoising and dilation help to reduce overhead and
increase coverage from the vanilla pattern-based CD algo-
rithm, especially for a large number of the pattern (P = 32).
The CD algorithm together with JPEG compression reduces
the on-chip VGA image size by 110× from 460 to 4.2 kByte
(with typical 12% change).

B. Architecture of CDE

The proposed architecture of the CDE performs CD with
an arbitrary dilation pattern on streamed-in images in Fig. 9.
First, it minimizes the MCB buffer size (line buffer) by
using three MCB-lined circular buffers: the three MCB-lines
are necessary for dilation processing of streaming-in MCBs.
Second, with the buffered MCB-streaming scheme, we can
simplify the logic of the CDE while supporting an arbitrary
dilation pattern without increasing the MCB buffer size or
clock speed. The image data streams in pixel by pixel and the
pixels are accumulated in an MCB line buffer to be read into
the MCB-based CD logic. The CD analysis and dilated result
of the current MCB are tracked in a CD map. Then, only the
top-left MCB of the one being currently analyzed is streamed
out depending on the value of the tracked CD map.
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Fig. 10. Architecture of the proposed NE.

Fig. 11. Computation of the convolution layer.

VI. EVENT RECOGNITION USING NE

This section introduces event recognition using the NE. The
proposed NE accelerates heterogeneous deep neural network
operations to enable hierarchical image recognition.

A. Architecture of NE

The highly programmable NE accelerates different types
of DNNs. Fig. 10 shows the overall architecture of the NE.
The NCX, an NE-dedicated RISC processor, controls the PE
by executing instructions from the NE instruction memory.
It communicates with other IP blocks via the AHB and
interrupts. The PE is a computational core with an 8-bit
MAC array and buffers. The weight, bias, and input/output
buffers ensure enough data bandwidth for full MAC array
utilization. In addition, the NE has 5 Mbit of NE shared
memory, a scratchpad of the NCX for storing input/output
activation, compressed DNN weights, and bias. The space
allocation of the NE shared memory is fully programmable,
providing complete flexibility in how the memory space is
used. The weight decompressor decodes compressed weights
from the NE shared memory and loads them to the weight
buffer on the fly.

B. Convolution and Sparse Fully Connected Layers

For a convolution layer, a set of weights is decompressed
once and swept across the entire input activation, as shown
in Fig. 11. Once the Huffman encoding information of the
convolution weights is loaded on the weight decompressor,

Fig. 12. Operation of sparse fully connected layer. (a) Outer product of
matrix-vector multiplication. (b) Computation of sparse fully connected layer.

a set of kernels are decompressed on-the-fly. A MAC array
runs MAC operations with decompressed weights and input
activations from weight and input/output FIFO each. To save
memory for intermediate output activation, the convolved and
accumulated ReLU results (32 bit) are shifted back to memory
as 8-bit fixed-point values.

For a large sparse fully connected layer, as shown
in Fig. 12(a), we propose the combination of the outer prod-
uct of matrix-vector multiplication and index-based weight
encoding. In on-demand scenarios for edge intelligent devices,
the NE is rarely activated, which lowers the opportunity
for batch operations. Each batch typically contains only a
single item for the intruder scenario, which disallows the NE
from reusing a certain weight more than once, whereas an
input activation is used multiple times. Therefore, the outer
product-based matrix-vector multiplication is more efficient
for sparse fully connected layer operation [14]. In our scheme,
only non-zero weights are encoded with their index. The
optimized hardware for the outer product maximizes the activ-
ity ratio of the MACs by only computing non-zero weights,
as shown in Fig. 12(b). In the outer product-based approach,
the first input activation element is multiplied to all non-zero
elements in the first column of the weight matrix producing
a partial sum vector stored in the accumulator memory. The
engine proceeds to the next input activation element to be
multiplied to all non-zero elements in the second column of
the weight matrix. The result is added to the previous partial
sum, and this operation continues until all input activations are
used. In this way, each element in the input activation vector
is maximally reused, unlike the inner product-based approach.

The NE achieves a peak efficiency of 1.5 TOPS/W (two
operations = 8-bit multiply and add) at 0.58 V while operating
at 153 kHz (allowing 5-frames/s person detection with a
32 × 20 pixel image).

C. NCX: Custom RISC Unit

The NCX is designed to run NNs independently with-
out complex control from the Cortex-M0 core. The NCX
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Fig. 13. NE ISA. (a) Format of NE instruction word. (b) OP codes of NE
instructions.

Algorithm 1 Convolution Layer Pseudocode of NCX
1: procedure CONVOLUTION LAYER(ia, w)
2: Load Huffman table on weight decompressor
3: Load bias on buffer
4: while Input activation remains do
5: Move input activation to buffer
6: Run convolution
7: Run ReLU
8: end while
9: end procedure

has a dedicated instruction set architecture (ISA), as shown
in Fig. 13. The ISA helps to reduce the size of the multiple
DNN instruction codes. The 256-bit PE instructions control
the PE’s operations, such as convolution and the pooling
layer. The 32-bit NCX instructions, which are packed in a
256-bit word, do arithmetic, branch, and special operations.
Notably, the “copy block (CPB)" instruction loads target image
data from the JPEG compression memory to the NE shared
memory.

Algorithm 1 presents an example of the convolution layer
pseudocode, where a Huffman table and bias are loaded, and
then, convolution and ReLU are performed on the loaded input
activation.

VII. OTHER TECHNIQUES

A. Reconstruction of H.264 Compressed Bitstream

The H.264 compressed image is reconstructed off-chip from
three types of information: the compressed change-detected
MCBs, CD map (1200 bits, 1 bit/MCB), and the pre-stored ref-
erence image, as depicted in Fig. 14. The CD map indicates the
locations of the change detected MCBs. The boundary MCBs
of the changed region are decompressed using the reference
image. The reference image is compressed and transferred
once and then used multiple times until a significant change is
detected. The frequency and triggering algorithm for updating

Fig. 14. Proposed image reconstruction scheme of the compressed bitstream.

Fig. 15. Proposed memory bridge for supporting various memory bandwidth.
(a) FSM of memory bridge. (b) Evaluation of bridge with the sync bit.

the reference frame can be programed depending on the use
environment.

B. Memory Bridge

We propose a memory bridge with a sync register and
a buffer to efficiently access memory banks that provide a
larger bandwidth than the bus interface, as shown in Fig. 15.
The custom-designed ultra-low leakage SRAM bit-width for
a single word was determined to balance the area density of
the bit cells, memory access bandwidth, and access energy.
As a result, custom-designed SRAM macros in the design have
different bit widths of 32, 64, 128, and 256 bits depending
on their size and usage. When the SRAM is accessed via a
32-bit-wide bus in the system, it needs a bridge with word
buffer registers to resolve the bit-width mismatch. The sync
bit associated with the buffer in the bridge indicates whether
the current buffered data are synchronized with the address
of the accessed memory. When the buffer is synchronized,
no additional memory access is needed because accessing the
buffer of the bridge is sufficient. For non-sequential 64-bit
data memory accesses via a 32-bit bus to execute a Cortex-
M0 program, the bridge with a sync bit and buffer reduces
the number of memory access by 38% compared with a case
without the bridge and buffer. Memory access reduction factor
is increased to 50% for sequential memory accesses, which
indicates that two consecutive 32-bit bus data are read from
a single 64-bit SRAM word. Note that this memory bridge is
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Fig. 16. Die photograph of the ISP.

Fig. 17. Measured ISP performance with the condition of 0.58-V logic
Vdd and 153 kHz. (CD ratio: 12%.) (a) Output compression performance.
(b) System energy consumption.

activated only when the memory is accessed via a central bus.
All local memory accesses (for example, within the NE) do
not require this memory bridge.

VIII. MEASUREMENT RESULTS

The ISP was fabricated in 40-nm LP CMOS, as shown
in Fig. 16, and operates at 153 kHz/0.58 V.

The latency (system energy) of person detection, face detec-
tion, and face recognition processing is 0.19 s (31.9 μJ),
3.22 s (541 μJ), and 2.85 s (478 μJ), respectively, as shown
in Fig. 17. Continually executing each step in the intruder
detection and recording scenario [see Fig. 3(a)] consumes
170 μW on average. The energy consumption of the full
data flow to produce a 192× compressed output image
(12% MCB change) is 1.5 mJ per frame. The LFW data
set [15] and COCO2017 [16] were used for NN training

Fig. 18. Confusion matrix of three customized image recognition neural
networks.

Fig. 19. Measured power distribution with the condition of 0.58-V logic
Vdd and 153 kHz. (a) VGA-sized current image streaming in with 12% CD
ratio (145 μW). (b) Person detection network running (169 μW).

Fig. 20. Testing environment of the ISP.

and testing, yielding the accuracy results given in Fig. 18.
When the person detection and unregistered face detection rate
are assumed to be 0.005 and 0.0005 frames/s, respectively,
the battery-operated system can last 16 times longer than a
system that transfers VGA frames wirelessly only when the
companion imager detects a triggering motion. Table I shows
the comparison to other ASICs that can perform DNN-based
face recognition.

The power distributions of the following two main tasks are
analyzed: current image streaming and person detection. When
the current image is streaming in, the ISE consumes 37% of
the total power (145 μW) and performs CD, and preprocess
image and JPEG compression, while the NE consumes 36%.
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TABLE I

COMPARISON WITH PREVIOUS WORK

When the person detection is running, the NE consumes 48%
of the total power (169 μW), as shown in Fig. 19.

The ISP was tested in the environment shown
in Fig. 20. A Linux machine controls the Raspberry Pi
and USB-controlled GPIO board to control the MBUS and
imager interface, respectively.

IX. CONCLUSION

We proposed and demonstrated a ULP ISP in 40-nm CMOS
technology. The ISP can cut system energy by 16× by
transmitting only useful information in a compressed format.
Useful information is classified and filtered by enabling hier-
archical image recognition in temporal and spatial dimen-
sions. Customized MCB-based compression reduces the size
of the image information by 192×. This work demonstrates
a complete end-to-end image signal processing platform for
mm-scale IoT imaging systems, which includes image pre-
processing, recognition, and compression.
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