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Abstract We present an ultra-low-power multimedia signal 
processor (MMSP) SoC that integrates a versatile deep neural 
network (DNN) engine with audio and image signal processing 
accelerators for cross-modal IoT intelligence. The proposed 
MMSP features 2MB MRAM to store all DNN weights on-chip 
with an energy-efficient dataflow using an MRAM-cache and 
dynamic power gating. The SoC achieves up to 3-10 TOPS/W 
peak energy efficiency and consumes only 0.25-3.84 mW. Being 
the first to demonstrate CNN, GAN, and back-propagation (BP) 
on a single accelerator SoC for cross-modal fusion, it outperforms 
state-of-the-art DNN processors by 1.4 - 4.5× in energy efficiency. 
Introduction: DNN-based image and/or audio processing has 
been widely adopted in intelligent IoT systems. However, the 
traditional processing flow (Fig. 1 top) that offloads DNN 
processing to the cloud suffers from bandwidth, energy and 
privacy problems for resource-constrained IoT applications. To 
tackle these challenges, the proposed SoC adopts a fully-at-edge 
processing flow for audio and image multimodal intelligence with 
integrated pre-/post-processing accelerators (JPEG, H.264, FFT, 
and Mel-spectrum), a GAN/BP-capable neural engine, and 2MB 
on-chip MRAM for non-volatile weight/data/code storage.  
Fig. 2 depicts target application scenarios of the proposed SoC. It 
can simultaneously receive 12b per pixel VGA images and 8kHz 
8b per sample audio signals using dedicated interfaces. The SoC 
can perform image- or audio-only applications such as face 
detection or keyword recognition, and also (conditionally) execute 
image-audio fusion applications such as cross-modal verification 
and active speaker detection to further increase the detection and 
recognition credibility. To accomplish this, the neural engine 
supports different types of DNN operations such as (depth-wise) 
convolution and fully connected layers (FCLs) for CNN, 
deconvolution for GAN, back-propagation for BPGAN [3], and 
on-chip weight retraining (transfer learning of the last layer).  
Architecture: Fig. 3 shows the overall SoC architecture. All sub-
blocks communicate with each other using an AHB bus. The audio 
interface performs audio feature extraction using frame buffers, a 
256-point FFT unit, a 32/64 channel Mel-filter unit, and a power-
to-dB log2 unit. The image interface features a change detection 
and on-the-fly JPEG compressed-memory [4] to temporarily store 
VGA frames in a compressed format. Only the change detected 
macro-blocks are stored and processed as regions-of-interest 
(RoIs). The H.264 engine performs image compression [4] on 
non-rectangular RoIs for compact storage in on-/off-chip memory. 
The neural engine (NE) is a reconfigurable DNN accelerator that 
supports various operations including (depth-wise) convolution, 
deconvolution, FCL, and back-propagation. NE supports DNN 
weights both in uncompressed (8b/weight) and Huffman-
compressed (~2b/weight) formats. The SoC integrates a 2MB 
MRAM macro to store all weights on-chip, and a 1.5MB multi-
bank SRAM activation memory to store all feature maps for 
backpropagation. For simple applications that only require partial 
activation memory, unused SRAM macros are dynamically power 
gated to save leakage power. The main computation unit is an 
8×8×8 processing element (PE, each with an 8-bit MAC) array, 
which enables activation and weight reuse via inter-PE 
connections.  The top 1×8×8 PEs are multi-functional PEs (MPEs) 
that supports both MAC and max/average pooling operations. 
Furthermore, ping-pong memory structures for the local memory 
and row/col buffer enable non-blocking pipelining between data 
movement and computation to increase PE utilization. The 
MRAM macro is accompanied with an MRAM cache to enable a 
dynamic power gating scheme (details in later section).  
Power Domain: Fig. 4 shows the power domain design of the SoC. 
We implement power gating for each SRAM block and MRAM 
macro to decrease standby leakage power up to 83%. Because the 
MRAM can retain all data, SRAMs can be power gated when NE 
is inactive. Most of the computation logic can also be power gated 
while the always-on block (pads, headers, state registers, and 
power sequence control logic) consumes only 460nW.  

NE Dataflow: Fig. 5 shows the energy-efficient, computation-
skipping dataflow scheme implemented in NE. The base dataflow 
is output stationary, which is used in convolution, strided 
convolution, and depth-wise convolution. Weights are shared 
along PE array rows, and input activations are shared across the 
output channels (OCs). For deconvolution, a zero-skipping 
dataflow exploits the deterministic and regular pattern of zero 
padding to increase throughput by 4× by only computing non-zero 
values in each PE (Fig. 5 left). For back-propagation through a 
ReLU layer, the zero activation positions are pre-recorded during 
the forward path to data-gate all computations in the backward 
path if they (back)propagate to a pre-recorded zero activation 
position (Fig 5 right).   
MRAM-cache Dynamic Power Gating: Although MRAM has 
the advantage of high density and non-volatility, its active leakage 
and readout power can be significant for ULP applications. To 
mitigate this issue, we propose an MRAM-cache architecture and 
dynamic power gating scheme (Fig. 6).  In our scheme, MRAM is 
power gated until NE executes the load weight (LD_WEIGHT) 
instruction. During LD_WEIGHT operation, MRAM powers up 
and weights are read and loaded into the SRAM-based weight 
cache (WC). MRAM then goes back into either 1) sleep (SLP) 
mode where the MRAM array is powered off but peripherals 
remain on, or 2) power-down (PD) mode where the peripherals are 
also power gated. The optimal selection between SLP and PD 
depends on the reuse factor of the cached weight, as shown in Fig. 
6 (bottom, right), which can be identified during NE programing.  
The measured MRAM VDIO current waveform shows the whole 
MRAM-cache sequence. During NN processing, weights are read 
from the weight cache (while MRAM is in either SLP or PD) for 
reduced memory readout power compared to MRAM accesses. 
Based on measured results, the combined weight caching and 
power gating reduces weight readout power by 95.3% with only 
slightly increased (4.3%) operation time due to MRAM wake-up 
latency and cache loading time overhead.  
The table in Fig. 6 summarizes the three different power modes: 
PD, SLP, and stand-by (STB). The analysis concludes that when 
each cached weight is reused for 353.4 MACs, the PD mode is 
preferable. Otherwise, SLP mode has an advantage because of the 
lower overhead in power-up energy (offsetting its higher leakage).  
Measurement Results: The SoC was fabricated in 22nm ULL 
technology and the die photo is shown in Fig. 9. The peak energy 
efficiency for various NN instructions is shown in Fig. 7 (left). 
The efficiency for convolution / deconvolution / stride-
convolution-backpropagation (CONV / DECONV / S_CONV_BP) 
is 3.1 / 10 / 10 TOPS/W. The efficiency for DECONV and 
S_CONV_BP is significantly higher because of the zero-skipping 
dataflow. The convolution backpropagation can achieve 3.7 
TOPS/W with zero-gating dataflow. Depth-wise convolution 
(DWCONV) and FCL have lower efficiencies due to only 1/8 of 
the PE array being utilized. Fig. 7 (right) shows the voltage-
frequency-efficiency tradeoff for CONV. The SoC achieves the 
highest energy efficiency at 0.46V (VDD_MAIN) and 1.2MHz, 
while the total system power is 387uW. Fig. 7 (right) shows that 
MRAM dynamic power gating enhances the energy efficiency 
especially at low voltage as it significantly reduces the leakage.  
Fig. 8 demonstrates a person-of-interest (PoI) tracking scenario 
and chip performance for that cross-modal intelligence scenario. 
This task first performs face detection (FD) on change-detected 
regions and then face recognition (FR) if faces are detected. The 
H.264 engine compresses the changed blocks if a PoI is 
recognized.  In the meantime, the audio interface extracts the 
audio features (AFE), and cross-modal verification (CMV) is 
performed using both the audio features and face image. If the 
CMV model confirms the audio is matched with the target face, 
the audio signal is compressed (AC) by BPGAN. Fig. 8 (bottom) 
shows the power consumption and latency of each step in this 
process. Table 1 compares this SoC and other state-of-the-art prior 
designs in similar application spaces. 
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Fig.3 System overall architecture.

Fig.5 Efficient dataflow for both forward and backward propagation.

Fig.6 MRAM-cache architecture and dynamic power gating scheme for MRAM.

Fig.7 Measured peak efficiency and voltage-freq-efficiency scaling

Fig.8 Person-of-interest (PoI) tracking system scenario and its performance.

Fig.9 Die photo and chip summary.

Table.1 Comparison table versus state-of-the-art.
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Testing Setup:
Frequency: 2.5MHz
VDD_MAIN: 0.5V
VDD_CORE: 0.6V
VDIO_MRAM: 1.8V
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