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Abstract—Over the last decade, advances in high-throughput
sequencing and the availability of portable sequencers have
enabled fast and cheap access to genetic data. For a given sample,
sequencers typically output fragments of the DNA in the sample.
Depending on the sequencing technology, the fragments range
from a length of 150-250 at high accuracy to lengths in few tens
of thousands but at much lower accuracy. Sequencing data is
now being produced at a rate that far outpaces Moore’s law
and poses significant computational challenges on commodity
hardware. To meet this demand, software tools have been
extensively redesigned and new algorithms and custom hardware
have been developed to deal with the diversity in sequencing
data. However, a standard set of benchmarks that captures the
diverse behaviors of these recent algorithms and can facilitate
future architectural exploration is lacking. To that end, we
present the GenomicsBench benchmark suite which contains
12 computationally intensive data-parallel kernels drawn from
popular bioinformatics software tools. It covers the major steps
in short and long-read genome sequence analysis pipelines such as
basecalling, sequence mapping, de-novo assembly, variant calling
and polishing. We observe that while these genomics kernels have
abundant data level parallelism, it is often hard to exploit on
commodity processors because of input-dependent irregularities.
We also perform a detailed microarchitectural characterization
of these kernels and identify their bottlenecks. GenomicsBench
includes parallel versions of the source code with CPU and GPU
implementations as applicable along with representative input
datasets of two sizes - small and large.

Index Terms—Genomics, Bioinformatics, Benchmarking, Com-
puter Architecture.

I. INTRODUCTION

Genomics is at the forefront of the precision medicine

revolution. Genome sequencing can help in early cancer de-

tection [1], developing targeted therapies to different tumor

mutations [2], identifying the causes of complex genetic

diseases [3], assessing risk factors, and developing new drugs.

For example, 42% of the drugs approved by FDA in 2018

were based on precision medicine data obtained from genome

This work was supported in part by Precision Health at the University of
Michigan, by the Kahn foundation, by the NSF under the CAREER-1652294
award and the Applications Driving Architectures (ADA) Research Center, a
JUMP Center co-sponsored by SRC and DARPA.

sequencing [4]. With the advent of portable and cheap se-

quencers, it is now feasible to test and monitor the emergence

of novel infectious diseases such as COVID-19 [5] among our

population and take timely action to prevent their spread.

A genome is a long string of DNA bases or nucleotides (A,

C, G and T). The human genome, for example, contains ∼6

billion bases, ∼3 billion bases per DNA strand.

Genome sequencing refers to the process of determining the

sequence of bases (i.e., A, C, G and T) in an individual’s DNA.

Genome sequencers typically read DNA by fragmenting it into

billions of short substrings (called “reads”).

Genome sequencing technology is far outpacing Moore’s

law in computing. Over the last decade, they have become

increasingly cheaper, faster, more portable, and produce longer

reads. The cost to sequence a human genome has dropped

from $10 million, a decade ago, to less than $1000 today.

Sequencing providers like Illumina can sequence a human

genome for $600 [6] and BGI/MGI [7] has further reduced the

cost to $100. Apart from the dramatic reductions in cost, there

has also been a corresponding increase in sequencing machine

throughput. For example, MGI’s DNBSEQ-TX and Illumina’s

Novaseq 6000 produce 20 Terabases [8] and 3.3 Terabases per

day respectively [9]. In addition, sequencing no longer requires

large bench-top instruments. Oxford Nanopore has introduced

the portable MinION sequencer which can produce longer

reads (few Kilobases to Megabases) in real-time, although

with a higher error rate (5-15%). These portable sequencers

also enable a kind of software-defined sequencing paradigm by

exposing interfaces to control the length of DNA in real-time

as it passes through the pore [10]. Taken together, all these

developments have given rise to widespread usage of genome

sequencing and ushered in the era of population genomics

with several countries/organizations aiming to sequence the

genomes of millions of humans [11]–[13]. However, comput-

ing solutions, hampered by challenges in scaling transistors,

have not been keeping pace.

In this paper, we identify commonly used modern se-
quencing pipelines, characterize their performance, and
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Fig. 1. Common workflows in genomics

extract their compute-intensive kernels. The goal is to com-

pile a standardized genome sequencing benchmark suite that

highlights the growing compute need in genomics and helps

shape future computing research in this space. Such an effort

has been lacking for this important computational domain.

Some notable prior works that perform detailed architecture

characterization of important bioinformatics workloads such as

BioPerf [14], BioBench [15] and MineBench [16] were carried

out in the last decade when sequencing technologies were still

nascent and not so diverse. Modern sequencing pipelines have

vastly different bandwidths, latencies, portability requirements,

algorithms, and pipelines than those used a decade ago. For

instance, new kernels that leverage vectorized implementations

for dynamic programming are now common. Machine learning

algorithms are now widely used to process long but noisy

reads. There is a wide variety of sequencers that vary in terms

of throughput, read length, and accuracy, to meet different

medical research and clinical needs. These have resulted in

a plethora of bioinformatics tools and pipelines. Without a

standardized benchmark suite that represents common com-

putational kernels, it becomes increasingly difficult to design

efficient computing system and processor architectures for this

rapidly emerging domain. There is also growing interest in

developing custom hardware solutions for sequencing [17].

These efforts can also greatly benefit from the availability of

a genomics benchmark suite.

To this end, we present the GenomicsBench benchmark

suite which covers the three key classes of sequencing-

based analysis: reference-guided assembly, de-novo assembly

and metagenomics. To select benchmarks, we identify the

most popular and well-maintained software tools used for

different steps in these applications. We then extracted the

time-consuming kernels in these tools and analyzed their

performance characteristics. We observe that many of these

kernels have a high degree of data-parallelism. But they are

irregular, making it challenging for GPUs to exploit them. This

motivates the need for newer architectures to exploit irregular

data-parallelism, or newer vectorization friendly algorithms for

these computational tasks.
To summarize, this paper makes the following contributions:

• We present the GenomicsBench benchmark suite consist-

ing of 12 representative kernels spanning the major steps

in short and long-read sequence analysis pipelines such

as basecalling, sequence alignment, de-novo assembly,

variant calling, and polishing.

• We perform a detailed analysis of the available paral-

lelism in these benchmarks and observe that while these

benchmarks have abundant data-parallelism, it cannot be

easily exploited on commodity hardware due to signifi-

cant irregularity.

• We perform a detailed characterization of the microarchi-

tectural performance bottlenecks, memory access charac-

teristics and thread scaling behavior of these benchmarks.

• We will open-source both the benchmark suite and input

datasets for the benefit of the broader research commu-

nity.

II. BACKGROUND AND METHODOLOGY

A. Common Genomics Pipelines

In this section we describe some common genomics

pipelines to analyze short and long read sequencing data

(also illustrated in Figure 1). All three pipelines start with

the raw sequencer output. Given a biological sample, typ-

ically, multiple copies of the contained genome sequence

are extracted and then decomposed into smaller nucleotide

fragments. A sequencer reads the sequence of nucleotides in
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the fragments and generates raw signals based on what it reads.

The first step in all the three pipelines prior to downstream

analyses is the interpretation of these signals to derive reads,

which are sequences of bases over the nucleotide alphabet

{A,C,G,T}. This step is called basecalling. For Illumina

sequencing machines, the signal data are fluorescence images

which are converted into bases using a proprietary basecaller,

Bustard [18]. For Oxford Nanopore (ONT) sequencers, raw

signals are the current perturbations in the nanopore (e.g., in

fast5 format). Guppy [19] is ONT’s proprietary basecaller

software. We characterize the open-source research basecaller

from ONT, Bonito [20] as part of the nn-base kernel

(Section III), which demonstrates higher basecalling accuracy

than Guppy [21].

Reference Guided Assembly: This pipeline reconstructs the

sample genome by aligning reads from it to a reference

genome and identifies differences in the sample (also called

variants) compared to the reference genome. Typically, small

differences, i.e., substitutions, short insertions and deletions

(< 50 bases) are identified. Sufficient number of copies of

the sample genome need to be sequenced to ensure random

sequencing errors can be distinguished from true variations

(each genome position is covered 30 − 50× on average).

This is especially needed for long reads from PacBio and

ONT which have 5 − 15% error rate per base [19], [22],

resulting in input datasets of several hundreds of gigabytes.

Subsequent analysis of this data can take several days on

a modern multicore processor [23]. Figure 1 a. shows the

two main time-consuming steps: (1) Read Alignment, which

determines the best location for each read in the reference

genome. (2) Variant Calling, which uses machine learning

or statistics-based models to gather support for variants from

aligned reads. BWA-MEM [24], [25] and GATK Haplotype

Caller [26] are the most popular short-read software tools

for these two steps recommended as part of GATK Best

Practices [27]. These account for ∼30-40% and ∼40% time

of the reference guided assembly pipeline respectively [25],

[28]. We select the fmi, bsw, phmm, nn-variant and dbg
kernels from this pipeline (Section III).

De Novo Assembly: This pipeline attempts to assemble the

reads into a genome de novo based on read overlaps in the

absence of a suitable reference. The availability of long reads

for de novo assembly has greatly improved the quality of

draft reference genomes. This is mainly because they can span

large structural variations (e.g, > 50 bases insertions/deletions,

large rearrangements) [29] and can help resolve mutations

from maternal and paternal chromosomes [30]. Long read

de novo assembly is typically done using the overlap-layout-
consensus method as shown in Figure 1 b. In the overlap

identification step, common seeds shared between read pairs

are used to identify potential overlapping regions. In the

layout step, these overlapping regions are extended into larger

contiguous regions. Finally the consensus step corrects small

errors in assembly. Large assembly errors are corrected in

a later graph-based polishing step. For long-read assembly

and polishing, Flye [31] and Racon [32] are popular software

tools. Assembly of the human genome using Flye [31] and

Racon [32] takes ∼4.5 days on a 64-thread server, each

contributing ∼30% to the overall time [23]. Basecalling is

performed using Guppy [19], ONT’s proprietary basecaller,

and also accounts for ∼30% of overall time [23]. We select

the chain, spoa, kmer-cnt kernels from this pipeline

(Section III).

Metagenomics Classification: The advent of portable se-

quencers like ONT MinION [33] has enabled several appli-

cations like real-time pathogen detection [34] and microbial

abundance estimation [35] in the field. Abundance estimation

involves aligning input microbial reads to a reference pan-

genome (consisting of reference genomes of all bacteria, virus,

fungi and humans) and later estimating the proportion of

different microbes in the sample as shown in Figure 1 c. It is

typically performed using software tools like Minimap2 [36]

and Centrifuge [37].

III. GENOMICSBENCH BENCHMARK SUITE

FM-Index Search (fmi): The FM-index (Full-Text Index

in Minute Space) is one of most common data-structures

in aligners such as Bowtie2 [38], BWA-MEM [24], [25],

SOAP3-dp [39] and metagenomics classification tools such

as Centrifuge [37]. It is used to identify the locations of short

matching substrings of the read (called seeds) in the reference

genome. The FM-index is attractive because of its low memory

footprint, ability to match substrings of any length and support

for inexact matching (i.e., identifying seeds with a small

number of edits with respect to the reference).

Figure 2 a. shows the FM-index constructed for a sample

reference (R) and an example search query from the read.

The FM-index consists of: (1) the suffix array (SA), which

contains the locations of lexicographically sorted suffixes of

the reference genome R, (2) the Burrows Wheeler Transform
(BWT), computed as the last column of the sorted suffix array

of the reference, (3) the count table (C) which stores the

number of characters in R lexicographically smaller than a

given character c and (4) the occurrence table (Occ) which

stores the number of occurrences of a character up to a certain

index in the BWT array.

The FM-index allows the backward search of a query of

length (|Q|) in O|Q|) iterations, with at most 2 memory

lookups per iteration (one each for computing the start and

end (s, e) intervals of the match). It is characterized by

irregular memory accesses to the large Occ table (blue arrows

in Figure 2 a.) and is both memory-latency and memory-

bandwidth bound. Since the memory access characteristics of

FM-index search are similar across different tools, we choose

the optimized super-maximal exact match (SMEM) search

computation in BWA-MEM2 [25] in our benchmark suite.

SMEM computation uses the FM-index to find the longest

exact match spanning a given position in the read.

Input Datasets: We provide small and large datasets, which

are a set of 1M and 10M human reads respectively, each 151

bases long, from sample SRR7733443 [25].

3
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Fig. 2. Selected benchmark kernels

Banded Smith-Waterman (bsw): The Smith-Waterman algo-

rithm [40] is a dynamic-programming algorithm that estimates

the pairwise similarity between pairs of sequences X and

Y with lengths m and n respectively in O(mn) time and

space. It is commonly used in sequence alignment tools

like BWA-MEM [24] and variant calling tools like GATK

Haplotype Caller [26], [27] to align millions to billions of

sequence pairs and is a major computation bottleneck. The

similarity score for DNA sequences is typically computed

using affine-gap penalties [41], which uses different penalties

for different edits (i.e., substitution, insertion and deletion)

and allows for identification of biologically meaningful short

insertions/deletions in pairwise alignments. It requires com-

putation of three matrices H , E and F corresponding to the

different edit types. For aligning sequences with a maximum of

w insertions/deletions, a banded version of Smith-Waterman is

commonly used (Figure 2 b. region between the black squares)

reducing time and space complexity to O(wn) where w is the

width of the band of cells computed in each row.

Hij = max{Hi−1,j−1 + s(i, j), Eij , Fij}
Ei+1,j = max{Hij − q, Eij} − e
Fi,j+1 = max{Hij − q, Fij} − e

. (1)

Equation 1 shows the recurrence relation for the Smith-

Waterman algorithm. s(i, j) is a pre-computed similarity score

between characters X[i] and Y [j] and the score in cell (i, j) of

matrix H (i.e., Hij) is the similarity score for substrings X[0, i]
and Y [0, j]. We choose the optimized banded Smith-Waterman

implementation in BWA-MEM2 [25] for our benchmark suite.

It makes use of inter-task parallelism to allocate similarly sized

sequence pair tasks to different SIMD lanes.

Input Datasets: Our small and large datasets use 100K and

10M seed extension pairs obtained from inputs to the Smith-

Waterman function in BWA-MEM2 for reads from human

sample SRR7733443 [25].

K-mer Counting (kmer-cnt): A k-mer is a fixed k-length

substring of a DNA sequence. K-mer counting counts the

number of occurrences of each unique k-mer in the input reads.

It is one of the most common tasks in bioinformatics sequence

analysis and is widely used in de novo assembly [31], [42],

error correction [43] and metagenomics classification [44].

Common use cases include filtering out low-frequency k-

mers in the input data that are likely to be sequencing errors,

finding high-frequency k-mers characteristic of repetitive ge-

nomic regions and constructing k-mer histograms to serve as

signatures of the input data [45]. Typical k-mer lengths are 15-

55. The computation task in k-mer counting is an incremental

update to a hash-table for each k-mer. These updates can

be parallelized across millions to billions of k-mers in the

input dataset. We focus on shared-memory k-mer counting and

characterize the k-mer counting implementation in the popular

Flye assembler [31].

Input Datasets: Our small and large datasets use 1K and

50K Oxford Nanopore reads from E.coli sequenced by Loman

lab [46].

De-Bruijn Graph Construction (dbg): Prior to calling

variants using the reads aligned to a region of the reference

genome (e.g., ∼100-1000 bases), it is necessary to correct

read alignment artifacts. Modern variant callers like GATK

Haplotype Caller [26], [27] and Platypus [47] do this by

re-assembling those reads into a De-Bruijn graph and later

traversing this graph to generate strings that are likely to

contain variants (called haplotypes). The graph is constructed

from both the k-mers of the read and the reference as shown in

Figure 2 c. Each node in the graph represents a unique k-mer

and each edge links adjacent k-mers in the input. A hash table

is used to track nodes that have already been inserted into the

graph. If cycles are found in the graph, graph construction

is repeated by increasing the k-mer size. Each input task to

this kernel is a set of reads aligned to a reference region. The

re-assembly tasks can be parallelized across different regions.

We model the De-Bruijn graph construction implementation in

the Platypus variant caller [47] for the benchmark suite that

accounts for >60% of its runtime.
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Input Datasets: We use BWA-MEM aligned records from

the Platinum Genomes dataset [48]. Our small dataset uses a

region of chromosome 22 (bases 16M-16.5M) while the large

dataset uses the entire chromosome 22.

Pairwise Hidden Markov Model (pairHMM): Using the

reads aligned to a region of the reference genome and the can-

didate haplotypes identified from De-Bruijn graph traversal, a

pairwise alignment of each read to each candidate haplotype is

performed to identify the most likely haplotypes supported by

the reads. The total workload per region is |R|× |H| pairwise

alignments, where |R| and |H| are the number of reads

and haplotypes respectively. Pairwise alignment is performed

using a Hidden Markov Model (HMM) and the likelihood

score is computed using the following dynamic-programming

recurrence relations [49]:

Mij = (Mi−1j−1θ + Ii−1j−1κ +Di−1j−1λ) · Pij

Iij = Mi−1jτ + Ii−1jε
Dij = Mij−1ζ +Dij−1η

. (2)

where: Mij , Iij and Dij represent match, insertion and

deletion probabilities for aligning read substring R[0, i] to

haplotype substring H[0, j], where 0 ≤ i ≤ |R| and 0 ≤
j ≤ |H|. These are weighted by different transition and

emission parameters of the HMM: θ, κ, λ, τ, ε, ζ, η. Pij is

the prior probability of emitting bases (R[i], H[j]), computed

using the floating point base-quality scores for the read R.

Base-quality scores are typically provided by the basecaller

and indicate the confidence of the basecaller in calling each

base in the read. Low quality bases from the read contribute

a smaller amount to likelihood score computed above. The

computation in pairHMM differs from the Smith-Waterman

kernel described earlier mainly in the use of floating-point

computation. There exists abundant intra- and inter-task paral-

lelism in this workload. Intra-task parallelism arises from data-

parallel processing of cells along the wavefront as shown in

Figure 2 d. Inter-task parallelism arises by parallel processing

of different genome regions. We use the optimized SIMD

implementation in GATK Haplotype Caller [26] as part of the

benchmark suite and extend it to leverage inter-task parallelism

using multiple CPU threads.

Input Datasets: We use the read-haplotype pair inputs to the

calcLikelihoodScore function in GATK Haplotype Caller [26].

Our small dataset uses as input BWA-MEM aligned reads for

region chromosome 22:16M-16.5M, while the large dataset

uses reads aligned to the entire chromosome 22.

Chaining (chain): One of the most time-consuming steps in

de novo assembly of long reads is overlap estimation between

reads [31], [42]. We characterize the chaining implementation

from Minimap2 [36] which is one of the most popular tools

for estimating pairwise overlap between reads and extend it to

support inter-task parallelism across different pairs of reads.

Given a set of seeds (also called anchors) shared between a

pair of reads, chaining aims to group together a set of co-linear

seeds into a single overlapping region as shown in Figure 2 e.

The chaining algorithm is a 1D dynamic programming based

algorithm that compares each anchor with N previous anchors

(default = 25) to determine its best parent. The recurrence

relation used to estimate the maximal chaining score of the

ith anchor [36], [50] is:

score(i) = max
{
max
i>j≥1

{score(j) + α(j, i)− β(j, i)}, wi

}

(3)

where wi is the length of anchor i, α(j, i) is the number of

matching bases between anchors i and j after accounting for

overlaps between them and β(j, i) is a penalty that is set based

on the relative distance between a pair of anchors on the two

reads.

Input Datasets: Our input dataset uses the anchors for 1K and

10K reads from the Pacbio sequence data for the C.elegans
worm [50], [51] when computing overlaps with itself.

Partial-Order Alignment (poa): After assembling the ref-

erence genome of a new species, it is common to perform

a polishing step to correct small errors in assembly using

the aligned reads. Racon [52] is one of the most popular

tools for long-read polishing. Given a set of reads aligned

to the target genome, Racon first splits the reads into non-

overlapping windows called chunks (which can be processed

in parallel) and then incrementally constructs a partial-order

graph [53] by aligning new sequences to it using a SIMD

accelerated dynamic programming algorithm (see Figure 2 f).

Later, the consensus sequence is generated from the graph

using the heaviest bundle algorithm [54]. Each node in the

partial-order graph represents a base of the input sequence

and weighted edges represent support from different reads

in the chunk. Since the nodes in multiple branches of the

graph cannot be ordered relative to each other, the graph is

said to be partially ordered. Aligning new sequences to the

graph is the most time-consuming operation in Racon and

has complexity O((2np + 1)n|V |), where np is the average

number of incoming edges to nodes in the graph, |V | is the

number of nodes in the graph and n is the length of the

read chunk. Contrast this with Smith-Waterman which has

complexity O(mn), with regular data-dependencies. As used

in Racon, our poa benchmark builds the consensus sequence

for each chunk in a separate CPU thread.

Input Datasets: We use 1000 and 6000 consensus tasks for our

small and large datasets respectively. These are obtained when

polishing the Flye-assembled Staphylococcus aureus genome

with Minimap2-aligned ONT long reads [19].

Adaptive Banded Signal to Event Alignment (abea): Com-

paring a time-series of raw nanopore signal data to a reference

genome sequence is a common task in the polishing of long-

read sequencing data and detection of methylated bases (i.e.,

non-standard nucleotides apart from A, C, G, T, which play

an important role in controlling gene expression). After seg-

menting the signal data into different events based on sudden

changes in signal current, each event is then compared against

the k-mers of the reference genome using a computationally

intensive dynamic programming algorithm called adaptive
banded event alignment (ABEA) [55]. ABEA is the most time-

consuming kernel when performing methylation calling using
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the software tool Nanopolish [56]. Event alignment is more

complex than banded sequence alignment since it requires an

adaptive band [57] to capture long gaps in optimal alignments

especially when dealing with long and error-prone Nanopore

reads. These long gaps arise because k-mers are often over-

represented (up to 2×) by multiple events as they are sam-

pled by the nanopore. Furthermore, event alignment uses 32-

bit floating point log-likelihood computation in its scoring

function and is computationally more expensive than sequence

alignment. We analyze the optimized GPU implementation of

ABEA [55] as part of the benchmark suite. In this heavily

optimized implementation, ABEA accounts for 24.5% of total

runtime.
Input Datasets: For ABEA, our small and large datasets use

1,000 and 10,000 raw FAST5 reads from chromosome 22

of NA12878, and the GRCh38 reference genome. This data

was obtained from the publicly available “Nanopore WGS

Consortium” dataset [58], [59].
Genomic Relationship Matrix (grm): All large-scale popu-

lation genomics studies need to account for potential ancestral

relationship between individuals in the study. This is done

by computing a N × N matrix called Genomic Relationship

Matrix (or GRM), where N in the number of individuals in

the study. Each element of the GRM Gij describes the average

genetic similarity between individuals and is computed as

follows:

Gij =
1

S
·

S∑

s=1

(xis − 2ps)(xjs − 2ps)

2ps(1− ps)
(4)

where xis and xjs indicate the number of copies of the non-

reference base at location s for individuals i and j respectively

and ps is expected frequency of a non-reference base at

location s in the population. S is the total number of SNV

(Single Nucleotide Variation) location markers in the reference

genome. We extract the GRM kernel from the popular popu-

lation genomics software PLINK2 [60]. The kernel performs

dense matrix multiplication and can benefit from parallel

computation of different output elements as shown in Figure 2

h.
Input Datasets: We compute the GRM on SNV data belonging

to 2504 individuals from 1000 Genomes Project Phase 3 [60].

Our small dataset uses 194K variants from chromosome 22

and our large dataset uses 1.07M variants from chromosome

1.
Neural Network-based Base Calling (nn-base): When

performing nanopore based genome sequencing, raw nanopore

signal data must be correctly converted to a sequence of nu-

cleotide bases through a process called basecalling discussed

earlier. As DNA moves through a nanopore, it does so at a

highly variable rate, and the resulting current is affected by

multiple consecutive nucleotides occupying the pore (∼5-10,

depending on the pore chemistry). Due to the limited resolu-

tion of the ADC sampler and unavoidable background noise,

there is considerable overlap between current levels measured

for different 5-mers. Basecallers resolve this ambiguity in

two stages. First, a deep recurrent or convolutional neural

Fig. 3. Overview of Bonito (left) and Clair (right)

network aggregates contextual information to determine the

most likely nucleotide observed at each time step. Using these

probabilities, a connectionist temporal classification decoder

[61] then determines the most likely sequence. The neural

network is by far the most time-consuming basecalling stage.

In order to make this computation regular and parallelizable,

existing basecallers segment the signal and perform inference

on many independent chunks, stitching the final sequence

together as a post-processing step. Our benchmark includes

the GPU-based CNN basecaller Bonito, which currently boasts

the highest basecalling accuracy [20].

Input Datasets: For basecalling, our small and large input

datasets are 100 and 1,000 raw FAST5 reads from chro-

mosome 20 of NA12878. This data was obtained from the

publicly available “Nanopore WGS Consortium” dataset [58].

Pileup Counting (pileup): A common pre-processing step in

long-read neural network variant callers such as Medaka [62]

involves parsing of alignment data for all reads aligned to

a region of the reference genome (called read pileup) and

generating counts for different bases, insertions and deletions

at these different pileup locations. These counts are later

analyzed by the recurrent neural network to call variants.

This pre-processing step is time consuming because it involves

random access into the alignment record to extract and parse

alignment information (represented as a CIGAR string [63]).

Fortunately, the pre-processing step can leverage inter-task

parallelism by distributing the processing of different 100

kilobase regions of the reference genome to different CPU

threads. The benchmark suite includes the inter-task parallel

version of pileup counting.

Input Datasets: We use the results from Minimap2 alignment

of ONT reads. Our small dataset uses aligned reads to the

Staphylococcus aureus genome [19], while the large dataset

uses reads aligned to chromosome 20 of sample HG002 [64].

Neural Network-based Variant Calling (nn-variant): Long-

read variants callers examine the read pileup for a particular

genome reference position and call homozygous and het-

erozygous variants with respect to that reference. We chose

to analyze the Clair variant caller because it outperforms

competing tools in terms of both performance and accuracy

for long reads [65]. As input, Clair accepts a size 33× 8× 4
tensor. Given a particular reference position, this tensor is

generated using pileup information for 16 bases flanking each

side (16+1+16 = 33), and considering the pileup counts for
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each base (A,C,G,T) and strand (forward,reverse) individually

(2 ∗ 4 = 8). Furthermore, 4 different encodings of the same

information is used: (a) raw pileup counts, (b) support for

insertions relative to (a), (c) support for deletions relative to

(a), and (d) support for alternative variants or alleles relative

to (a). Clair uses a series of recurrent neural networks with

bidirectional long short-term memory (LSTM) units and fully-

connected layers to predict a potential variant’s genotype,

zygosity, and indel length of each haplotype. Refer to [65]

for network details.

Input Datasets: For benchmarking Clair on long reads, we

selected all raw FAST5 reads from the q13.12 region of

chromosome 20 of NA12878 from the “Nanopore WGS

Consortium” [58] dataset. These reads were basecalled using

high-accuracy Guppy 3.6.0, and mapped using Minimap2. Our

small dataset variant called the first 10,000 reference positions

from this region, and our larger dataset used 500,000.

CPU Intel Xeon E3-1240 v5 3.5 GHz; AVX2;
1 socket; 8 threads

L1 I&D cache 4 x 32KB Inst; 4 x 32KB Data, 8-way
L2 cache 4 x 256KB, 4-way
L3 cache 4 x 2 MB, 16-way

Memory bandwidth 31.79 GB/s
TABLE I

BASELINE SYSTEM CONFIGURATIONS.

IV. PERFORMANCE CHARACTERIZATION OF

BENCHMARKS

A. Characterization Methodology

Several of the genomic analysis tools described earlier

operate on large datasets and can run for several days. To

keep the study manageable, we adopt the following method-

ology. We first profile all software tools with Intel VTune

Profiler 2020 [66] as well as manual timing instrumentation to

identify the most time-consuming kernels in both single and

multi-thread settings. Later, we isolate these kernels and run

representative input datasets of two sizes. Kernel executions

with the small inputs finish in a few minutes, while the

large inputs take 5–20 minutes on a single-thread. Both

the small and large inputs capture the bottlenecks in

the original application and exercise the kernel in similar

ways (e.g., similar proportions of different dynamic instruc-

tions and memory accesses with different strides). We use

the MICA pintool [67] to compute statistics on instruction

distribution. Cache miss and memory stalls are obtained using

performance counter events from the hardware event-based

sampling collector [68]. All kernels and inputs/outputs are

extracted as-is from the original software tools. The tools

already support multithreading. For ease of benchmarking, we

made the following modifications to the extracted benchmarks:

(1) OpenMP parallelization with dynamic scheduling was

used to reliably evaluate thread scaling of the benchmark

after isolation from the software tool and (2) file I/O-related

driver code was added for reading inputs and writing results.

GPU benchmarks are characterized using Nvidia’s Visual

1The proportion of runtime taken by the pileup kernel increases dramat-
ically when a GPU is used for variant calling.

Profiler [69] and nvprof on the Nvidia Titan Xp GPU with

12GB GDDR5x memory. Table I details our experimental

machine configuration. We present characterization results for

all benchmarks except nn-variant which failed to complete

successfully using nvprof on both a native run as well as

within a Docker container.

B. Parallelism

1) CPU benchmarks

In this section, we present a detailed characterization of

the sources of parallelism in our CPU benchmarks and the

challenges in exploiting them.

Overview: Table II presents an overview of different bench-

marks and their corresponding parallelism motifs based on

the taxonomy provided in [45]. bsw, phmm, chain, spoa
and abea are dynamic programming based but have impor-

tant differences. The key ones are: (1) type of data depen-

dency present (e.g., 1D / 2D), (2) amount of computation

needed (e.g., banded/full matrix), (3) type of matrix traversal

(e.g., wavefront/row-wise) and (4) type of input (e.g., se-

quence/graph). Also present in the benchmark suite are kernels

that manipulate hash tables and perform graph construction

(dbg, spoa).

Some of the GenomicsBench benchmarks like grm and

kmer-cnt have regular compute patterns since their inputs

come in regular, pre-determined sizes. In contrast, a majority

of the GenomicsBench benchmarks work on inputs with vary-

ing sizes and characteristics and have irregular compute pat-

terns. Table III shows the data-parallellism granularity for each

of the irregular compute GenomicsBench benchmarks and the

corresponding data-parallel computation performed. Note that

it is possible to reduce the data-parallelism granularity further

by vectorizing each of the data-parallel computations shown

in the second column of Table III. However, this comes with

significant additional complexity arising from the complex

data dependencies present in the benchmarks (Figure 2). To

overcome this, implementations often speculate on the absence

of data dependencies to achieve high performance (e.g., [70]).

This complexity can often be traded-off for abundant paral-

lelism to be exploited across two other dimensions: (1) read-

level parallelism and (2) genome region-level parallelism as

shown in Table III. Since each of the benchmarks process

millions to billions of reads across millions of genome re-

gions there exists abundant data-parallelism across both these

dimensions. Several software tools have adopted this approach.

For example, BWA-MEM2 [25] has demonstrated significant

benefits by vectorizing inter-sequence computation instead of

vectorizing the cell updates for bsw.

Challenges in exploiting data parallelism: In spite of

abundant read-level / genome region-level parallelism in the

GenomicsBench benchmarks, it is difficult to exploit them

effectively in different software tools. To understand why,

consider the following hypothetical scenario where each data-

parallel computation entity discussed in Table III is assigned

to a separate vector lane. Each vector is replaced with a

new batch of tasks as soon as all of the ones currently
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Benchmark Input Datatype Applications Chosen Tool % Time Spent in Tool Parallelism Motif
(single-thread)

fmi Short reads Read Alignment BWA-MEM2 38% Tree Traversal
Metagenomics Classification

bsw Short reads Read Alignment BWA-MEM2 31% Dynamic Programming
De-Novo Assembly

dbg Short reads Variant Calling Platypus 65% Graph Construction
De-Novo Assembly Hash Table

phmm Short reads Variant Calling GATK Haplotype Caller 70% Dynamic Programming
Error Correction

chain Long reads De-Novo Assembly Minimap2 47.4 % Dynamic Programming (1D)
Read Alignment

spoa Long reads Error Correction Racon 75 % Dynamic Programming
Graph Construction

abea Long reads Basecalling Nanopolish 71.4% Dynamic Programming
Variant Calling

grm NA Population Genomics PLINK2 92.8 % Dense Matrix Multiplication
nn-base Long reads Basecalling Bonito 95 % FP Matrix Multiplication

nn-variant Long reads Variant Calling Clair 57.2 % FP Matrix Multiplication
kmer-cnt Long reads De-Novo Assembly Flye 10% Hash Table

pileup Long reads Variant Calling Medaka 6.3 % 1 —

TABLE II
CATEGORIZATION OF BENCHMARKS. FOR BENCHMARKS WITH UTILITY IN MORE THAN ONE APPLICATION, THE SELECTED APPLICATION IS

UNDERLINED.

Fig. 4. Distribution of the amount of data-parallel computation performed for each task (x-axis) and its frequency (y-axis) for the different benchmarks.
Variations in the computation needed for each task based on its size and data characteristics makes it difficult to exploit the abundant parallelism present in
each benchmark. To enable comparison across benchmarks, the normal probability distribution function (PDF) has been used to represent the frequency of
computation on the y-axis.

Benchmark Parallelism Data-Parallel
Granularity Computation

fmi Read batch # OCC Table Lookups
bsw Seed # Cell Updates
dbg Genome Region # Hash Table Lookups

phmm Genome Region # Cell Updates
chain Read # Input Anchors
spoa Read Chunk Window # Cell Updates

pileup Genome Region # Read Lookups
TABLE III

PARALLELISM GRANULARITY AND DATA-PARALLEL COMPUTATION FOR

IRREGULAR CPU BENCHMARKS. OTHER REGULAR COMPUTE

BENCHMARKS NOT SHOWN

assigned to it complete. For vectorization to be efficient,

all the tasks assigned to each lane must perform a similar

amount of computation. Any imbalances in the computation

across vector lanes can severely reduce the efficiency of vector

computation and lead to control divergence. For this reason,

the inputs to the bsw kernel, for example, are sorted based

on sequence lengths before being assigned to SIMD lanes.

However, even if input sequence lengths have been accounted

for, differences in input sequence content can greatly influence

the computation performed in each SIMD lane. This is because

matrix computation can also be aborted early when aligning

highly dissimilar sequences of similar length using bsw. As a

result we find that the AVX2 16-bit inter-sequence vectorized

bsw implementation in GenomicsBench performs 2.2× more

cell updates than the scalar implementation. Note that the

vectorization challenges outlined above exist not only for

CPU-based software tools but also for GPUs, which also

employ SIMD units to increase compute density.

Similar observations can also be made for the other irregular

CPU compute benchmarks. It can be seen from Figure 4 that

there exists significant variation in the amount of data-parallel

computation performed by different tasks in different bench-

marks. For phmm, which computes the most likely haplotype

given supporting reads, certain genome regions can have up to

1000× imbalance in the computation needed when compared

to the average case (as can be seen from the mean (5.2M ) and

maximum (4.41G) cell update values across different regions).

However, it must be noted that regions with such low or high

computational demand are fewer (as indicated by the lightly

shaded circles). Across different benchmarks we find that the

ratios of maximum to average computation per task can vary

from 4.1× to 8.3×.

2) GPU benchmarks

Whereas the CPU kernels selected for this benchmark suite

were diverse and often encountered challenges in exploiting

data parallelism, the GPU kernels we investigated had fairly
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regular control flow and compute patterns. Predictable control

flow and data accesses are a prerequisite for efficient utilization

of GPU computing resources, and abea and nn-base were

likely implemented on the GPU for this reason.

abea nn-base
Branch efficiency 100 % 100 %

Warp efficiency 75.09 % 100 %
Non-predicated warp efficiency 70.18 % 94.43 %

SM utilization 70.53 % 99.83 %
Occupancy 31.41 % 88.47 %
TABLE IV

GPU KERNEL CONTROL FLOW AND COMPUTE REGULARITY

The abea and nn-base kernels both avoid branch di-

vergence entirely, and achieve relatively high warp efficiency.

This is shown in Table IV. Warp efficiency is defined as

the average fraction of active threads in a warp, and “non-

predicated” efficiency restricts the definition of active to

threads which are not executing predicated instructions. Neural

network basecallers such as Bonito break sequences of raw

nanopore signal into regular chunks of 4,000 consecutive mea-

surements and feed that data into a fixed-size neural network.

Since floating point matrix multiplication is computationally

intensive and involves very little control flow, nn-base is

able to achieve perfect warp efficiency and nearly-complete

occupancy and SM utilization. The few predicated instructions

reducing overall throughput are likely due to the fact that the

neural network of nn-base does not operate using filters of

sizes which are integer multiples of 32, the number of threads

in a warp. On the other hand, the abea kernel performs a

dynamic programming matrix computation instead of matrix

multiplication, it is limited by the execution and memory

dependencies inherent to the structure of the computation.

Furthermore, abea requires frequent synchronization between

warps. As a result, the SM utilization and warp efficiency are

lower.

C. Instruction Diversity

Instruction diversity characterization helps determine the

complexity of functional units needed for specialized hard-

ware. Figure 5 shows the dynamic instruction breakdown

for the different CPU benchmarks. The “Other” category

includes string, system call, prefetching, and synchronization

instructions.

Fig. 5. Breakdown of dynamic instructions in different benchmarks. grm is
excluded because its multithreaded design to decompress inputs affects the
accuracy of measurements from the MICA pintool.

Among the benchmarks analyzed, phmm, bsw, and spoa
benefit from SIMD vectorization and have a high proportion

of vector computation instructions. It can be also be seen

that phmm is the only CPU kernel that performs floating

point computation, while the other kernels are dominated by

scalar integer computation. phmm also uses single-precision

floating point computation in most cases, and resorts to

double-precision floating point only in rare cases when single-

precision is insufficient to represent the result. bsw, phmm, and

chain are compute-intensive and have a lower proportion

of memory loads and stores when compared to memory-

intensive benchmarks like fmi. We also looked at the common

operations performed in vectorized benchmarks. For instance,

bsw uses blend instructions for cell updates and band

adjustment, and spoa extensively uses shift instructions to

compare against cells present in a previous column or diagonal

but which are part of a different SIMD vector.

D. Memory Access Characteristics

1) CPU benchmarks

In this section, we perform a detailed characterization

of the memory access patterns of different GenomicsBench

benchmarks.

Off-chip Data Requirements: Figure 6 shows the off-chip

Fig. 6. Off-chip data requirements for different benchmarks.

data requirements for different GenomicsBench benchmarks.

It can be seen that benchmarks like fmi and kmer-cnt
have significantly higher off-chip data requirements, measured

in DRAM bytes per kilo-instruction (BPKI) (66.8 BPKI and

484.1 BPKI respectively). For fmi and kmer-cnt the mem-

ory access bottlenecks are due to irregular memory accesses

over large working sets, ∼10 GB (FM-index) and ∼8 GB (hash

table) respectively, with little spatial or temporal locality. In

kmer-cnt, there is low spatial locality because a 1-2 byte

counter is updated for every 64 bytes (cache block) read from

memory. Potential approaches to improve kmer-cnt per-

formance include implementing cache-friendly hashing tech-

niques like robin hood hashing [71], and improving temporal

locality since the k-mers to be inserted into the hash table are

known a priori.

In contrast, other benchmarks like spoa have modest off-

chip data requirements (6.62 BPKI), while compute-intensive

benchmarks like phmm have much lower data movement (0.02

BPKI) from off-chip memory.

Cache Miss Rates: Figure 8 shows the L1 and L2 cache

miss rates and percentage of CPU cycles spent stalling for

data. Notably in fmi and kmer-cnt, 41.5% and 69.2% of

CPU cycles are spent waiting for data. While fmi uses all the

bytes in a cache block when performing OCC table lookups,

kmer-cnt only updates a 1-2 byte counter per LLC miss

9

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 26,2022 at 19:14:28 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7. Thread scaling for different kernels in GenomicsBench. Dotted red line shows the maximum speedup achievable on the experimental system with 28
cores. Experiments were performed on a dual socket (14-core per socket Haswell machine (Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz, AVX2) with 35
MB LLC)

and has poor spatial locality. Apart from these two, other

benchmarks spend <20% of CPU cycles waiting for data.

Fig. 8. (a) L1 and L2 misses per kilo-instruction (MPKI) (b) Percentage of
CPU cycles spent for waiting for data.

2) GPU benchmarks

When accessing global memory, abea and nn-base ker-

nels were unable to achieve peak memory bandwidth due to

strided or irregular data accesses. This is shown in Table V.

abea nn-base
Global Load Efficiency 25.5 % 70.3 %
Global Store Efficiency 68.5 % 100 %

TABLE V
USEFUL PROPORTION OF GPU GLOBAL MEMORY BANDWIDTH USED.

The extent of irregularity of memory accesses in both

GPU kernels is a direct artifact of the type of computation

performed. For nn-base, neural network model weights and

inputs can be loaded in several large accesses at the start of

computation. Since Bonito’s convolutional neural network is

comprised of many layers of separable convolutions, these

matrix vector multiplications are not too large and can be

performed in shared memory. At the end, results are written

to global memory in contiguous transactions. For the abea
kernel, however, there are dependencies between consecutive

diagonal bands of the dynamic programming matrix which

are computed. In order to calculate the matrix efficiently, the

previous three rows (which the following band computation is

dependent on) are stored in Shared Memory. This leaves no

room to cache the reference’s k-mer current model and other

frequently accessed data in Shared Memory. The resulting

accesses to global memory are performed with sub-optimal

efficiency due to the decreased spatial locality of data accesses.

E. Thread Scaling

Figure 7 shows the thread scaling behavior of the multi-

threaded versions of the irregular CPU benchmarks. All inputs

to these benchmarks are grouped into independent tasks with

each task dynamically scheduled on a CPU thread using

OpenMP. Almost all GenomicsBench benchmarks benefit from

coarse-grained task-level parallelism. It can be seen that most

of the benchmarks achieve perfect scaling (bsw, dbg, phmm
and spoa), while fmi and chain achieve near-perfect

scaling. kmer-cnt uses close to the peak random access

memory-bandwidth on our system and does not scale well

with increasing number of threads, whereas pileup suffers

from random memory accesses.

F. Microarchitectural Bottleneck Analysis

Fig. 9. Top-down microarchitectural bottleneck analysis of kernels (single
thread).

Figure 9 shows the results of top-down analysis [72] of

performance bottlenecks. It can be seen that memory-bound

benchmarks like fmi and kmer-cnt spend 44.4% and 86.6%

of their pipeline slots waiting for data. For fmi, >80%

of OCC table accesses lead to opening of a new DRAM

page making the accesses highly irregular. There is also little

spatial or temporal locality in k-mer counting. Each update

to the k-mer count table results in a last-level cache miss

leading to significant memory-latency related stalls. Some of

these stalls could potentially be mitigated by implementing

software prefetching [71], since the k-mers to be looked

up are known in advance. Compute-intensive benchmarks

like bsw, chain and phmm spend >50% of their pipeline

slots retiring instructions. They are bottlenecked by backend

core resources because of limited number of available ports

for scheduling vector and floating point instructions. grm
performs CPU-friendly dense matrix multiplication and makes

best use of available CPU pipeline slots (87.70% retiring).

The memory-related stalls in spoa and pileup result from

cache misses during incremental update of the partial-order

alignment graph and random accesses to the read alignment

records respectively.
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V. RELATED WORK

The BioPerf benchmark suite [14] evaluates several DNA

and protein sequence analysis benchmarks such as BLAST

[73] and HMMER [74] and provides pre-compiled Alpha

binaries with Simpoints to facilitate architectural simula-

tion. Some of these benchmarks are further characterized in

BioBench [15] and have been shown to have a high ILP. Re-

cent updates to these benchmarks have also been proposed in

BioBench2. GenomicsBench improves coverage of these prior

benchmark suites by including both vectorized dynamic pro-

gramming kernels (bsw, phmm, spoa) and GPU-optimized

dense neural network kernels (nn-base, nn-variant).

Among the GenomicsBench benchmarks, only phmm and bsw
share similarities with HMMER and BLAST in performing

floating point matrix computation and local alignment with

Smith-Waterman respectively. Other benchmarking efforts also

focus on characterizing the BioBench benchmarks on different

architectural platforms [75], [76] and increasing its usabil-

ity [77]. GenomicsBench leverages some of the optimized

implementations for different short-read benchmarks proposed

in prior work [71], and expands its scope to cover a broader

diversity of sequence analysis steps and includes long-read

benchmarks. Prior work [78] identifies some of the key com-

putation kernels in secondary analysis, but with a focus on

short reads. Intel’s Genomics Kernel Library (GKL) [79] also

includes reference vectorized implementations of a few short-

read benchmarks like phmm.

VI. CONCLUSION

In this paper, we present the GenomicsBench benchmark

suite, containing 12 computationally intensive genomics ker-

nels drawn from popular bioinformatics software tools. We

perform detailed instruction level and microarchitectural anal-

ysis on these kernels to expose their performance bottlenecks.

We also observe that the irregular data-parallelism in these

benchmarks cannot be easily exploited by commodity hard-

ware. GenomicsBench will be open sourced to the broader

research community.
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