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Abstract— This article presents an energy-efficient deep neural
network (DNN) accelerator with non-volatile embedded resistive
random access memory (RRAM) for mobile machine learn-
ing (ML) applications. This DNN accelerator implements weight
pruning, non-linear quantization, and Huffman encoding to store
all weights on RRAM, enabling single-chip processing for large
neural network models without external memory. A four-core
parallel and programmable architecture adapts to various neural
network configurations with high utilization. We introduce a cus-
tomized RRAM macro with a dynamic clamping offset-canceling
sense amplifier (DCOCSA) that achieves sub-microampere input
offset. The on-chip decompression and memory error-resilient
scheme enables 16 million (M) 8-bit (decompressed) weights on
a single-chip using 24 Mb RRAM. The proposed RRAM-DNN is
the first digital DNN accelerator featuring 24 Mb RRAM as all-
on-chip weight storage to eliminate energy-consuming off-chip
memory accesses. The fabricated design performs the complete
inference process of the ResNet-18 model while consuming
127.9 mW power in TSMC-22 nm ULL CMOS. The RRAM-DNN
accelerator achieves peak performance of 123 GOPs with 8-bit
precision, exhibiting measured energy efficiency of 0.96 TOPs/W.

Index Terms—Deep learning, deep neural network (DNN)
ASIC, machine learning (ML) hardware, mobile, model com-
pression, non-volatile memory, resistive random access memory
(RRAM).

I. INTRODUCTION

EEP neural network (DNN) algorithms, first introduced
in the early 1960s [1], are the cornerstone of modern
artificial intelligence (AI) because they achieve unprecedented
accuracy on various computer vision and machine translation
tasks. The next wave in the Al revolution is the deployment of
these DNNs on mobile platforms to perform challenging tasks
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under real-world constraints. However, existing hardware
and infrastructure cannot provide satisfying performance
and energy efficiency for emerging deep-learning-based
applications because of their excessive computation and
large memory footprints in state-of-the-art DNN models. For
object recognition with the ImageNet data set [2], these DNN
models [3]-[5] typically comprise more than ten million
parameters and require more than 10 GOP per inference,
which translates to more than 50 MB on-chip storage and
300 GOPS throughput for real-time 30 frames/s operation.
They consume >100 W of power with general-purpose
graphics processing units (GPGPUs), which cannot be
integrated on mobile platforms due to their excessive
power consumption and form factor. Therefore, there is a
growing demand for high-performance, energy-efficient, and
re-configurable DNN processors for mobile and embedded Al
applications [6]-[17].

A. Prior Work and Limitations on ML Algorithms and ASICs

To address these challenges, various approaches using both
machine learning (ML) algorithms and efficient hardware
designs have been proposed to reduce the complexity of the
DNN inference and to improve the energy efficiency, thereby
maintaining accuracy for applications.

Tandola et al. [6] and Sandler et al. [7] propose to
re-architect the neural network models and leverage efficient
building blocks to reduce both the model size and the num-
ber of multiply-and-accumulate (MAC) operations. However,
despite the dramatic complexity reduction, these approaches
create new DNN layers with novel memory-access and chal-
lenging computation requirements that are not well-optimized
with existing hardware [17]. Alternative approaches such
as [8], [9] reduce the model complexity with pruning, quan-
tization, entropy coding, and/or low-rank approximation of
weights. However, their real-time energy-savings and perfor-
mance gains are limited because of the inefficiency of running
unstructured sparse models on the hardware. For example, [18]
reports >1 W power consumption for real-time inference using
compressed DNNss.

In parallel with improving DNN models, many digital
ASICs [10]-[17] were proposed recently to accelerate deep
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Fig. 1. Conventional system-level dataflow of NPU.

learning on mobile platforms. Various optimization techniques
are explored in these designs, including dataflow optimiza-
tions [10]-[12], precision reduction [11], [13], [14], sparsity
awareness [15], [16], and bit-serial operation [11]. Combining
these techniques onto silicon implementations, state-of-the-art
DNN processors achieve more than 100 GOPS performance
and ~2 TOPS/W efficiency during inference.

However, as shown in Fig. 1, most of these digital ASICs
adopt a DRAM-neural processing unit (NPU) -style processing
architecture for loading and computing DNN models [19]. The
weights and input activations (IAs) are transferred on chip for
processing while computed output activations (OAs) are trans-
ferred back to the large off-chip DRAM for temporary storage.
While the processing on the NPU is extensively optimized
through various techniques [11]-[16] (Fig. 1), transferring data
on/off the NPU to the DRAM becomes a major bottleneck
in the overall system because of the frequent and extremely
high-energy data access to external DRAMs. In fact, trans-
ferring a byte from DRAM consumes >3000x more power
than performing an 8-bit MAC calculation [10]. To relieve this
problem, [10]-[12] propose to integrate dedicated weight and
activation buffers and optimize the dataflow to reduce the data
transfer to external DRAMSs. Additionally, [14] proposes to
leverage data compression technique to reduce the bandwidth
to the DRAM. These methods significantly reduce the data
access overhead to the DRAM but do not completely solve
the problem.

To reduce the off-chip data/parameter accesses, a few prior
designs [12], [13] attempt to store all parameters on chip.
However, [13] suffers from very limited on-chip memory
capacity (only ~100 kB of weights are stored), which is
insufficient to support large applications with > 10 M weights.
The design [12] achieves high capacity (7.68 MB on-chip
weights and 96 MB SRAM stack) at the expense of high
system power (3.3 W) due to the large SRAM stack and
inductive inter-die communication.

B. Prior Work and Limitations on Non-Volatile Memories

Although embedded Flash memory has been deployed
in micro-controllers as non-volatile storage for code and
data [20], [22], technology scaling poses a substantial chal-
lenge with regard to the use of such charge-based Flash,
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SRAM, and DRAM [21]. The reduced capacity to hold suffi-
cient charge on the floating gate of Flash memory, the inter-
nal capacitive node of SRAM, and the cell capacitor of
DRAM degrade the performance, reliability, and noise margin,
limiting their applications. As possible solutions, emerging
non-charge-based non-volatile memories have been proposed,
such as resistive random access memory (RRAM) [22]-[24],
MRAM [25], [26], and PCRAM [27]. Among them, RRAM
is a promising candidate for wide adoption to ML/DNN
applications as it has logic-process compatibility and a large
on—off ratio between the high resistance state and low resis-
tance state for potential multi-level operations [24]. Various
DNN accelerators employing Computation-In-Memory (CIM)
techniques on RRAM have been proposed [28], [29]. However,
due to limited computing precision, these CIM accelerators are
not readily scalable to high-accuracy DNNs. And to date, there
have been few designs that leverage RRAM’s higher density
and low standby power for all-on-chip parameter storage in
large-scale digital DNN accelerators (versus a general-purpose
non-volatile microcontroller [23]).

In this article, we present the first digital DNN acceler-
ator featuring 24 Mb RRAM for all-on-chip weight storage
to eliminate energy-consuming off-chip weight accesses,
thereby reducing the overall system operating power. The
design employs a four-processing element (PE) architecture
in 22 nm ULL CMOS technology with 24 x 1 Mb custom-
designed embedded RRAM banks. Using pre-compressed
DNN models with an on-the-fly weight decompression mech-
anism, we achieve on average ~1.5 b/weight for AlexNet,
3.2 b/weight for ResNet-18, resulting in a maximum total
capacity of 16 M weights on chip. Highly parallelized and
mesh-connected MAC arrays in the PE enable various work-
load mapping schemes to support DNN layers with differ-
ent memory and compute characteristics. To reliably read
and write to the RRAM, we propose a dynamic clamping
offset-canceling sense amplifier (DCOCSA) that achieves sub-
microampere input-sensing offset and a Write-Verify scheme
for reliable programming. Combined with a mesh-connected
MAC array architecture and 8 Mb shared SRAM, the proposed
DNN accelerator operates at 120 MHz at 0.8 V digital VDD,
achieving 0.96 TOPS/W [30].

The remainder of this article is organized as follows.
Section II describes the overall architecture as well as the
design details of the RRAM-DNN chip. Section III explains
the dataflow and mapping of heterogeneous ML workloads
onto the architecture. Section IV describes the compression
of the DNN model. Section V explains the circuits of the
custom-designed RRAM. Section VI shows the measurement
results, and Section VII concludes this article.

II. OVERALL ARCHITECTURE

Fig. 2 shows the overall architecture of the RRAM-DNN
chip. The design consists of four PEs connected to a shared
bus and a global shared memory. Each PE has its local
memory for buffering the input—output activations, dedicated
6 Mb RRAM memory banks for non-volatile parameter stor-
age, MAC array units for highly parallelized processing, and
instruction memory for controlling the layer functions. In the
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Fig. 2.

Overall architecture of the RRAM-DNN chip.

architecture, each PE has both read/write access to its own
local memory as well as read access to its neighboring PEs’
local memories. The global shared memory is 8 Mb, and it
supports parallel write and read access if the accesses are
pre-partitioned to different memory banks. Due to the large
chip size and the heterogeneous memory hierarchy, different
memories in the architecture have different access latencies.
The local memories including the input and weight buffers
achieve 1 cycle access latency. Accessing neighboring PE’s
memories and the global memory incur access latencies of 2
cycles and 4 cycles, respectively. Moreover, the shared global
memory coalesces multiple accesses by broadcasting data
to all or a subset of four PEs when their read addresses
are identical. In simulation, broadcasting data to coalesced
requests results in ~4x latency reduction when multiple PEs
are fetching the same TA from the global shared memory.

During the execution of a layer function, a PE first loads
a block of IAs from the global shared memory to its local
memory following user-defined memory partitioning. The PE’s
neighbors can share its IA because of the local connectivity
between PEs. The PE then processes the layer function on
the block of inputs with local stored weights. After all OAs
are computed, the PE moves the output block back to the
shared global memory. Each PE may process different data
and execute different instructions, which can lead to a variable
processing latency. Therefore, synchronization is necessary to
ensure correct layer operations when the PEs are collaborating.
The proposed design can be programmed to synchronize all
or a subset of four PEs.

A. Detailed Architecture of the PE

Fig. 3 details the design of a single PE. Inspired by
Li et al. [31], the PE architecture exploits parallelism and data
reusability across different input dimensions to improve energy
efficiency. Each PE has a mesh of 128 8-bit multiply/32-bit
accumulate MAC units in four clusters (each with a grid of
4 x 8 MAC units). Each MAC also contains 32-bit flipflops to
locally store processed partial sums. In total, four PEs have
512 MAC units on chip, enabling massive parallel processing
for compute-intensive CNN operations. Moreover, each PE
processes four input channels (IC), four output channels (OC),
and eight TAs in parallel to maximize the data reusability in
the MAC array. Each PE has its own private 6 Mb RRAM
for parameter storage. During the CNN operation, weights
are first read from the RRAM, decompressed through the
decompression engine, and transferred to small 2-bank,
4-kB interleaved weight buffers for frequent local accesses.
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The MAC array processing and weight decompression occur
concurrently (pipelined) to maximize throughput. Accessing
the small 4 KB weight memory provides 128 bit/cycle
memory access bandwidth with high access energy efficiency.
The 4-bank, 32 kB local buffer stores input and output
activation with 256 bit/cycle access bandwidth. The high
data bandwidth from both the weight buffer and local buffers
ensures the full utilization of the 128 MAC units.

B. Instruction Set Architecture

To control the processing of MAC units for hundreds of
cycles without explicit instruction decoding in each cycle,
256-bit Very long Instruction Word (VLIW) instructions are
used. Moreover, the instructions are stored in the 32 kB
instruction memory of each PE so that it can be programmed
independently to control the processing sequence and synchro-
nization of the DNN algorithm if necessary. Offset (direct)
addressing with respect to each PE’s own base address is
used in the instruction set architecture (ISA) for arithmetic
operations within a PE, including CONV, ADD, and POOL,
to reduce the bit-width of the instructions. Non-offset global
direct addressing is used when the data are moved from/to
the global memory. Fig. 4 details the ISA of the proposed
RRAM-DNN processor. The proposed ISA supports not only
various layer functions such as convolution, pooling, matrix
multiplication, and ReLU, but also flexible layer partition
schemes such as the number of split input and OC. Data
concatenation and scaling can also be achieved through
MOV (move), ADD (addition) instructions.
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C. Decompression Engine

The weight compression algorithm is adopted from [8].
During the training, unimportant weights are pruned to zero
and all non-zero weights are non-uniformly quantized to
64 levels. To compress each weight, we use the Huffman
encoded weight value (one of 64 levels) as well as the run
length of the non-zero weight position. This algorithm com-
presses each weight to bit on average with negligible accuracy
degradation for ResNet-18 [5]. Each PE is equipped with
a decompression engine to decode the compressed weights
stored in the RRAM. Each decompression engine contains two
programmable Huffman tables: one for weight values and the
other for run-length positions. These tables share a parallel
lookup table (LUT)-based decoder. Decompressing Huffman
encoded weight values and run-length positions to meet the
processing bandwidth of the PE is challenging. On the one
hand, decompressing the Huffman encoded 96-bit in a single
cycle requires a logic with very long critical paths (>10 ns)
due to inter-bit dependence in the compressed bit sequence.
On the other hand, if the Huffman decoding was performed
in series with single bit per cycle throughput, an entire weight
packet would cost > 250 cycles to process. Decompression
throughput needs to be balanced with the throughput of
the MAC array which takes 72 cycles for processing eight
rows of 3 x 3 kernel. Therefore, instead of traversing a
binary Huffman tree sequentially by advancing a single bit
per clock cycle, we decode 4 bits in parallel to improve
the performance (Fig. 5) per cycle. This requires storing all
possible 4-bit subtrees (Fig. 6), which are stored in each PE
and programmed through the PE programming interface. The
critical path of decompressing 4 bits in parallel is 3 ns. Note
that the layer-dependent nonuniform weight quantization and
pruning requires reprogramming of these Huffman tables/trees
for each DNN layer. We minimize the programming overhead
by programming multiple PEs simultaneously when they share
the same table.

D. RRAM Weight Storage and Static Error Resiliency

The compressed weights for convolutional layers are stored
in the RRAM as packets shown in Fig. 7. Each packet has a
variable length (because each weight length is variable) and is
split into multiple RRAM words. Each packet contains a layer
specification, Huffman coded weight values, and run-length
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Fig. 7.  On-chip compressed weight storage in RRAM.

codes for 4 input and 4 OC. The layer specification consists
of the kernel offset and location for weights. We insert this
specification information for every packet to make the system
resilient to RRAM word errors. Since each weight and packet
has variable length, a single RRAM word error can cause
catastrophic decompression failure for subsequent packets.
The proposed packet specification enables faulty word mitiga-
tion by repeating the same packet (including the specification)
twice if the first packet was written on a faulty RRAM word(s).
In that case, the second packet overwrites the first faulty packet
during the decompression process. We assume RRAM word
error locations are static and identifiable before programming
the chip.

III. DATAFLOW OF THE PROPOSED RRAM-DNN CORE

The proposed architecture and ISA support flexible mapping
of heterogeneous DNNs for efficient hardware execution. This
section discusses the various energy-efficient dataflows that
are supported in the proposed architecture. The evaluations of
different dataflows are performed with a python-based cycle
accurate simulator, modeling the behavior of the designed
four-PE system. The simulator pre-allocates weights and
activations onto the PEs and computes corresponding mem-
ory addresses based on a given partitioning scheme. Then,
the simulator profiles the chip behavior/execution trace for
evaluation/verification, and also generates VLIW instructions
(Fig. 4) to control the chip.
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A. Partition Workload Onto PEs by OC

One example of mapping a DNN layer to the architecture
is shown in Fig. 8. The colors in Fig. 8 indicate weight/kernel
mapping of a convolutional layer to the architecture, where the
weights are split by different OC mapped on dedicated PEs.
In this example, the weights are pre-partitioned on these four
PEs, and each PE is programmed to compute different OC
through instructions. Meanwhile, the IAs are partitioned into
8 x 8 blocks, with all associated IC, for processing to match
the local memory capacity in each PE. When the processing
of an 8 x 8 block for all IC finishes, the PE re-organizes
the output and moves it back to the global memory. The
outputs from multiple PEs are concatenated in this process
to form the complete layer output. The timing diagram of
the process is shown in Fig. 8 (bottom). Although each PE
stores only 1/4 of the total weights and also processes only
1/4 of the convolutions, the same complete [As from the
prior layer must be copied to the local memories of each PE.
To minimize this potentially redundant traffic and save data
transfer time, we enable the bus to broadcast IA to all PEs.
In simulation, the combination of IA broadcasting and global
memory access coalescing improves the MAC utilization and
reduces the inference latency by 7% (Fig. 10).

B. Fartition Workload Onto PEs by IC

Another possible mapping of a convolutional layer to dif-
ferent PEs is input channel-based partitioning. In that case,
each PE processes a partial sum of different IC as shown
in Fig. 9. A selected PE merges the results from neighboring
PEs hierarchically and then writes the merged results to
the global memory (Fig. 9, bottom). Thanks to the local
connection between neighboring PEs, no extra data movement
is needed as each PE has read access to each neighboring PE’s
local memory. Similar to the output channel split mapping
in Section III-A, weights are pre-partitioned on these four
PEs and IAs are partitioned into 8 x 8 blocks (and 4 of
all IC) for processing. Compared with splitting the OC, this
input channel partitioning scheme involves uneven workload
distribution among the PEs because a selected PE(s) needs
to perform the extra merge and move operations. This can
potentially lead to idle cycles and low MAC utilizations for the
other PEs. However, the workload can be balanced throughout
the entire convolution layer if the merge and move operations
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are mapped onto all PEs in a round-robin fashion. Because
the TAs are partitioned into 8 x 8 x 4 (IC) blocks per PEs,
and typically there are >64 blocks in a layer, the workload
can be balanced for the overall layer. This workload balancing
scheme improves the overall MAC array utilization by 2.5%.
Fig. 10 summarizes the different workload partitioning meth-
ods and their impacts on MAC utilization with ResNet-18.

Each individual layer in the network can be separately
programmed for the best workload partitioning based on the
layer characteristic. For the ResNet-18 example shown, 8%
overall latency reduction can be achieved with layer-dependent
best combinations of aforementioned partitioning schemes
compared to a naive approach (Fig. 10).

C. Data Reuse for Efficient Convolution Processing

Convolution operations on a single PE are optimized with
massive parallelism and data-reuse. Similar to the CNN design
in [31], each PE consists of four clusters of 8 x4 MAC arrays,
processing eight consecutive pixels and four consecutive IC
in parallel. Partial convolution is performed with shifting IAs
using a row of 8 MAC units with k (kernel size) cycles. This
operation is repeated on the second and third row of IAs
to complete the 2-D convolution. The pooling operations are
performed in the same fashion except that MAC is replaced by
Max in the 128 MAC units. Partial products in 2-D convolution
are accumulated locally in each MAC unit to improve the
energy efficiency without unnecessary memory accesses.
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D. Data Reuse for Efficient Processing of Sparse Fully
Connected Layers

The compressed weights for the FCL are very sparse,
with typically less than 20% density [8] (Table I), whereas
the TAs for the fully connected layers (FCL) are densely
populated. Inspired by Subhankar er al, [32], we deploy
outer-product-based matrix vector multiplication to efficiently
compute the FCL and skip all zero multiplications. Similar to
the convolution operation, sparse FCL weights are stored in
the compressed format and are pre-partitioned onto each PE
during the compile time to enable highly parallelized process-
ing with multiple PEs (Fig. 11). Different from convolution
layers, weights for FCL are only pruned and quantized without
Huffman coding to increase the decompression rate to match
the throughput of parallelized processing without weight reuse.
During processing, each element of IAs is multiplied with
sparse non-zero weights from RRAM in each PE. Partial
outputs are then accumulated and stored in the accumulators
depending on the location of the non-zero weights. As multiple
PEs finish processing subsets of an FCL, selected PEs merge
the FCL output hierarchically and write the results to the
global memory.

IV. COMPRESSED MODEL FOR SIMULATION
AND MEASUREMENTS

To enable the single-chip implementation for DNN models,
we leverage an idea from a state-of-the-art deep compression
scheme [8] for compressing DNN models. However, the com-
pression scheme also has to be co-designed to maximize the
performance and efficiency of the architecture. The convolu-
tion layers typically require less bandwidth to decompress
weights because each weight can be reused over multiple
cycles for different input—-OAs. Therefore, the weights for

convolution layers are pruned, non-linearly quantized with
64 weight centroids and run-length coded using 5-bit codes to
achieve maximum compression. On the other hand, weights
are only used once for FCL. Thus, it is necessary to simplify
the compression scheme to balance the weight decompression
throughput with the FCL computation throughput. The weights
for FCL in our design are pruned without any entropy cod-
ing. On average, the proposed compression scheme achieves
~5.5 bit per weight in convolution layers and 2.4 bit per
weight in FC layers. Table I shows an example of applying the
compression on ResNetl8 when trained and evaluated under
the ImageNet data set [2]. Pruning the weights reduces the
model size of the convolution layers by 68% and FCL by 82%.
Run-length coding and Huffman coding further compress the
pruned convolution layers by 40% (from 8-bit weight and
5-bit run-length to 5.5-bit weight and 2.4-bit run-length for
non-zero weights). With both methods combined, the average
bits/weight is 3.2.

After the proposed weight compression, the DNN model
exhibits negligible accuracy degradation compared with 8-bit
uncompressed weights under ImageNet [2] evaluation.

V. CUSTOMIZED RRAM MEMORY

The 1 Mb custom-designed RRAM bank uses a butterfly
architecture, as shown in Fig. 12(a), which is composed of four
256 x 1024 RRAM arrays with 32 b word length. The three
colors denote the three main power domains used in the bank
for testing flexibility: 1.4 V for the word line (WL, green),
1.25 V for the column mux (red), and 1 V for the sense ampli-
fier (SA) and ctrl (blue). The RRAM array employs a common
source line (SL) cell arrangement [33]. Thus, the column-wise
peripherals include an equalizer [Fig. 12(b)] to virtually short
the half-selected column when the other one is being written.

A. Dynamic Clamping Offset-Canceling SA

RRAM typically suffers from high variation in cell resis-
tance which can vary by 2~10x for the low resistance state
and 5~100x for the high resistance state [34], leaving a
small sensing margin on sensing circuits. To address the high
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variation nature of the RRAM, the two-stage offset-canceling
current-mode SA shown in Fig. 13 is proposed. The first stage
is composed of two cross-coupled current sampling branches
similar to the scheme in [35], which doubles the input current
difference and effectively halves the offset. In addition, the first
stage incorporates dynamic clamping, instead of typical static
clamping, to bring down the bitline settling time and increase
the sensing speed. Unlike conventional clamping amplifiers,
which are large and power hungry, a carefully designed
self-biased inverter provides the feedback loop. The settling
time is reduced by 50% (simulation) compared to a static
clamping SA under the same load. The second stage provides
further amplification and offset-reduction with a single-cap
auto-zero regenerative amplifier [26].

Fig. 15(a) details the operation of the proposed SA.
In step @, the input and output of the inverter are shorted to
self-bias the clamp transistors, with bias voltage sampled on
the Ci’s. Meanwhile, the regenerative amplifier of the second
stage is also shorted to sample the offset and cancel it out in
the following steps. This step overlaps with address decoding
to avoid a timing penalty. Then, in step @, the shorted
inverter in phase one is disconnected to function as a negative

1111

feedback amplifier, and the WL is turned on to allow the
two diode-connected PMOS headers to sample the currents
I and I on their respective branches. After the current
settles, in step @, the two headers are switched to the other
branch and function as a current source, which generates
current difference I.e; — It on both input nodes of the second
stage. However, note that the directions of the two current
differences are opposite, which effectively doubles the current
difference of the input to the second stage to 2(leen — lref)-
Finally, in step @, the second stage is fired and latches the
output. The voltage waveforms of the internal nodes are shown
in Fig. 15(b). A sub-microampere current offset is achieved at
21 puA common mode input under 1.2 V VDD from Monte
Carlo (MC) simulation with 500 samples; Fig. 14 gives the
offset distribution at different temperatures.

B. Write-Verify Process

RRAM also suffers from variation in write time. At a fixed
write voltage, the write time of slow cells and fast cells can
differ by more than 100x [36]. Thus, applying a write pulse of
the same length to both fast and slow cells causes unnecessary
power and endurance losses on the fast cell. So, a fine-
grained iterative Write-Verify control is adopted. Each bit in a
word is separately controlled based on the read result, ruling
out correlation between fast and slow cells, which alleviates
locality-dependent variation. Furthermore, with Write-Verify,
each cell automatically adapts to the corresponding SA offset,
further reducing the locality dependence.

Fig. 15(c) illustrates the block diagram of the Write-Verify
control. Following a write request, each RRAM cell of the
target address is read out first to compare with the input
data (DG) initiated by the global control. If the read-out
value (d) of a cell is the same as the corresponding bit in DG,
the write process of that cell concludes for better endurance.
On the other hand, the cell is programmed to the desired value
by the iterative Write-Verify process.

VI. MEASUREMENT

We implement the proposed accelerator in 22 nm ULL
CMOS technology with each PE of size 1614 x 1394 um?
and each 1 Mb RRAM bank of size 235 x 514 um? as shown
in the die photograph [Fig. 16 (a)]. The test chip achieves
120 MHz core clock frequency at 0.8 V VDD and consumes
42.4 mW when evaluating a CNN layer of size 4 x 3 x 3 x 16
as depicted in the measured power/frequency versus VDD plot
[Fig. 16(b)] for core digital logic, which is everything except
the RRAM banks.

In the implementation, the RRAM clock is hard coded to
be half of the core clock; the RRAM operates at 60 MHz
for the 120 MHz core frequency. A power breakdown of the
four RRAM power domains is shown in Fig. 17(a), with 1V
for the SA and control, 1.4 V for the WL, 1.25 V for the
column mux, and 1.1 V for the inverter amplifier, noting that
this breakdown includes the effect of the possible static errors
in RRAM. A measured RRAM resistance distribution across
~10 k cells randomly sampled from the 24 banks in one test
chip at room temperature is shown in Fig. 17(b). The proposed
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accelerator consumes 127.9 mW in total, including weight
decompression and transfer from RRAM to SRAM, resulting
in a power efficiency of 0.96 TOPS/W. Table II compares the

Excluding power of loading weights from off-chip memory

work to recent NN accelerators. The proposed design achieves
the highest number of on-chip stored weights due to the model
compression and better density of RRAM and is also the only
design employing non-volatile memory as dedicated weight
storage, thereby reducing standby power for edge devices.

VII. CONCLUSION

In summary, we present the first energy-efficient digital
DNN accelerator featuring RRAM for dedicated weight
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storage to enable efficient single-chip inference of NN models

for
we
To

mobile devices. Using on-the-fly weight decompression,
achieve a total capacity of 16 M 8 bit weights on chip.
reliably read from and write to the RRAM, we propose

a DCOCSA achieving sub-microampere input-sensing offset.
Together, these techniques help us eliminate fully off-chip
weight access. The proposed processor is prototyped and

me

asured in TSMC 22 nm ULL with RRAM technology. This

design supports single-chip NN model inference with ~16 mil-
lion parameters. It achieves 123 GOPs throughput in real-time,
consuming 127.9 mW from a 0.8 V supply, with measured

0.9
hig

6 TOPS/W efficiency. The proposed design achieves the
hest number of on-chip-stored weights and is also the only

design employing non-volatile memory as dedicated weight
storage, reducing standby power for edge devices.
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