IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 4, APRIL 2021

1105

RRAM-DNN: An RRAM and Model-Compression
Empowered All-Weights-On-Chip DNN Accelerator

Ziyun Li™, Member, IEEE, Zhehong Wang™, Graduate Student Member, IEEE,

Li Xu

, Graduate Student Member, IEEE, Qing Dong™, Member, IEEE,

Bowen Liu, Graduate Student Member, IEEE, Chin-1 Su, Member, IEEE,
Wen-Ting Chu, Member, IEEE, George Tsou, Member, IEEE, Yu-Der Chih, Member, IEEE,

Tsung-Yung Jonathan Chang, Fellow, IEEE, Dennis Sylvester~, Fellow, IEEE,

Hun-Seok Kim*™', Member, IEEE, and David Blaauw

Abstract— This article presents an energy-efficient deep neural
network (DNN) accelerator with non-volatile embedded resistive
random access memory (RRAM) for mobile machine learn-
ing (ML) applications. This DNN accelerator implements weight
pruning, non-linear quantization, and Huffman encoding to store
all weights on RRAM, enabling single-chip processing for large
neural network models without external memory. A four-core
parallel and programmable architecture adapts to various neural
network configurations with high utilization. We introduce a cus-
tomized RRAM macro with a dynamic clamping offset-canceling
sense amplifier (DCOCSA) that achieves sub-microampere input
offset. The on-chip decompression and memory error-resilient
scheme enables 16 million (M) 8-bit (decompressed) weights on
a single-chip using 24 Mb RRAM. The proposed RRAM-DNN is
the first digital DNN accelerator featuring 24 Mb RRAM as all-
on-chip weight storage to eliminate energy-consuming off-chip
memory accesses. The fabricated design performs the complete
inference process of the ResNet-18 model while consuming
127.9 mW power in TSMC-22 nm ULL CMOS. The RRAM-DNN
accelerator achieves peak performance of 123 GOPs with 8-bit
precision, exhibiting measured energy efficiency of 0.96 TOPs/W.

Index Terms—Deep learning, deep neural network (DNN)
ASIC, machine learning (ML) hardware, mobile, model com-
pression, non-volatile memory, resistive random access memory
(RRAM).

I. INTRODUCTION

EEP neural network (DNN) algorithms, first introduced
in the early 1960s [1], are the cornerstone of modern
artificial intelligence (AI) because they achieve unprecedented
accuracy on various computer vision and machine translation
tasks. The next wave in the Al revolution is the deployment of
these DNNs on mobile platforms to perform challenging tasks

Manuscript received August 16, 2020; revised November 3, 2020 and
December 7, 2020; accepted December 13, 2020. Date of publication
December 31, 2020; date of current version March 26, 2021. This article
was approved by Guest Editor Yusuke Oike. (Ziyun Li and Zhehong Wang
contributed equally to this work.) (Corresponding author: Zhehong Wang.)

Ziyun Li, Zhehong Wang, Li Xu, Bowen Liu, Dennis Sylvester, Hun-Seok
Kim, and David Blaauw are with the Department of Electrical Engineering
and Computer Science, University of Michigan, Ann Arbor, MI, 48109 USA
(e-mail: liziyun@umich.edu; zhehongw @umich.edu).

Qing Dong is with TSMC, San Jose, CA 95134 USA.

Chin-I Su, Wen-Ting Chu, George Tsou, Yu-Der Chih, and Tsung-Yung
Jonathan Chang are with TSMC, Hsinchu 300-86, Taiwan.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSSC.2020.3045369.

Digital Object Identifier 10.1109/JSSC.2020.3045369

, Fellow, IEEE

under real-world constraints. However, existing hardware
and infrastructure cannot provide satisfying performance
and energy efficiency for emerging deep-learning-based
applications because of their excessive computation and
large memory footprints in state-of-the-art DNN models. For
object recognition with the ImageNet data set [2], these DNN
models [3]-[5] typically comprise more than ten million
parameters and require more than 10 GOP per inference,
which translates to more than 50 MB on-chip storage and
300 GOPS throughput for real-time 30 frames/s operation.
They consume >100 W of power with general-purpose
graphics processing units (GPGPUs), which cannot be
integrated on mobile platforms due to their excessive
power consumption and form factor. Therefore, there is a
growing demand for high-performance, energy-efficient, and
re-configurable DNN processors for mobile and embedded Al
applications [6]-[17].

A. Prior Work and Limitations on ML Algorithms and ASICs

To address these challenges, various approaches using both
machine learning (ML) algorithms and efficient hardware
designs have been proposed to reduce the complexity of the
DNN inference and to improve the energy efficiency, thereby
maintaining accuracy for applications.

Tandola et al. [6] and Sandler et al. [7] propose to
re-architect the neural network models and leverage efficient
building blocks to reduce both the model size and the num-
ber of multiply-and-accumulate (MAC) operations. However,
despite the dramatic complexity reduction, these approaches
create new DNN layers with novel memory-access and chal-
lenging computation requirements that are not well-optimized
with existing hardware [17]. Alternative approaches such
as [8], [9] reduce the model complexity with pruning, quan-
tization, entropy coding, and/or low-rank approximation of
weights. However, their real-time energy-savings and perfor-
mance gains are limited because of the inefficiency of running
unstructured sparse models on the hardware. For example, [18]
reports >1 W power consumption for real-time inference using
compressed DNNss.

In parallel with improving DNN models, many digital
ASICs [10]-[17] were proposed recently to accelerate deep

0018-9200 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:05:55 UTC from IEEE Xplore. Restrictions apply.

1106

~150pJ / 8bit

Weights
Input activations
Output activations

~1pJ / 8bit READ
~0.2pJ / 8bit MAC

NPU

DRAM

I W eight stationery

Input stationery

Reduced precision Output stationery

Weight compression

Fig. 1. Conventional system-level dataflow of NPU.

learning on mobile platforms. Various optimization techniques
are explored in these designs, including dataflow optimiza-
tions [10]-[12], precision reduction [11], [13], [14], sparsity
awareness [15], [16], and bit-serial operation [11]. Combining
these techniques onto silicon implementations, state-of-the-art
DNN processors achieve more than 100 GOPS performance
and ~2 TOPS/W efficiency during inference.

However, as shown in Fig. 1, most of these digital ASICs
adopt a DRAM-neural processing unit (NPU) -style processing
architecture for loading and computing DNN models [19]. The
weights and input activations (IAs) are transferred on chip for
processing while computed output activations (OAs) are trans-
ferred back to the large off-chip DRAM for temporary storage.
While the processing on the NPU is extensively optimized
through various techniques [11]-[16] (Fig. 1), transferring data
on/off the NPU to the DRAM becomes a major bottleneck
in the overall system because of the frequent and extremely
high-energy data access to external DRAMs. In fact, trans-
ferring a byte from DRAM consumes >3000x more power
than performing an 8-bit MAC calculation [10]. To relieve this
problem, [10]-[12] propose to integrate dedicated weight and
activation buffers and optimize the dataflow to reduce the data
transfer to external DRAMSs. Additionally, [14] proposes to
leverage data compression technique to reduce the bandwidth
to the DRAM. These methods significantly reduce the data
access overhead to the DRAM but do not completely solve
the problem.

To reduce the off-chip data/parameter accesses, a few prior
designs [12], [13] attempt to store all parameters on chip.
However, [13] suffers from very limited on-chip memory
capacity (only ~100 kB of weights are stored), which is
insufficient to support large applications with > 10 M weights.
The design [12] achieves high capacity (7.68 MB on-chip
weights and 96 MB SRAM stack) at the expense of high
system power (3.3 W) due to the large SRAM stack and
inductive inter-die communication.

B. Prior Work and Limitations on Non-Volatile Memories

Although embedded Flash memory has been deployed
in micro-controllers as non-volatile storage for code and
data [20], [22], technology scaling poses a substantial chal-
lenge with regard to the use of such charge-based Flash,

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 4, APRIL 2021

SRAM, and DRAM [21]. The reduced capacity to hold suffi-
cient charge on the floating gate of Flash memory, the inter-
nal capacitive node of SRAM, and the cell capacitor of
DRAM degrade the performance, reliability, and noise margin,
limiting their applications. As possible solutions, emerging
non-charge-based non-volatile memories have been proposed,
such as resistive random access memory (RRAM) [22]-[24],
MRAM [25], [26], and PCRAM [27]. Among them, RRAM
is a promising candidate for wide adoption to ML/DNN
applications as it has logic-process compatibility and a large
on—off ratio between the high resistance state and low resis-
tance state for potential multi-level operations [24]. Various
DNN accelerators employing Computation-In-Memory (CIM)
techniques on RRAM have been proposed [28], [29]. However,
due to limited computing precision, these CIM accelerators are
not readily scalable to high-accuracy DNNs. And to date, there
have been few designs that leverage RRAM’s higher density
and low standby power for all-on-chip parameter storage in
large-scale digital DNN accelerators (versus a general-purpose
non-volatile microcontroller [23]).

In this article, we present the first digital DNN acceler-
ator featuring 24 Mb RRAM for all-on-chip weight storage
to eliminate energy-consuming off-chip weight accesses,
thereby reducing the overall system operating power. The
design employs a four-processing element (PE) architecture
in 22 nm ULL CMOS technology with 24 x 1 Mb custom-
designed embedded RRAM banks. Using pre-compressed
DNN models with an on-the-fly weight decompression mech-
anism, we achieve on average ~1.5 b/weight for AlexNet,
3.2 b/weight for ResNet-18, resulting in a maximum total
capacity of 16 M weights on chip. Highly parallelized and
mesh-connected MAC arrays in the PE enable various work-
load mapping schemes to support DNN layers with differ-
ent memory and compute characteristics. To reliably read
and write to the RRAM, we propose a dynamic clamping
offset-canceling sense amplifier (DCOCSA) that achieves sub-
microampere input-sensing offset and a Write-Verify scheme
for reliable programming. Combined with a mesh-connected
MAC array architecture and 8 Mb shared SRAM, the proposed
DNN accelerator operates at 120 MHz at 0.8 V digital VDD,
achieving 0.96 TOPS/W [30].

The remainder of this article is organized as follows.
Section II describes the overall architecture as well as the
design details of the RRAM-DNN chip. Section III explains
the dataflow and mapping of heterogeneous ML workloads
onto the architecture. Section IV describes the compression
of the DNN model. Section V explains the circuits of the
custom-designed RRAM. Section VI shows the measurement
results, and Section VII concludes this article.

II. OVERALL ARCHITECTURE

Fig. 2 shows the overall architecture of the RRAM-DNN
chip. The design consists of four PEs connected to a shared
bus and a global shared memory. Each PE has its local
memory for buffering the input—output activations, dedicated
6 Mb RRAM memory banks for non-volatile parameter stor-
age, MAC array units for highly parallelized processing, and
instruction memory for controlling the layer functions. In the

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:05:55 UTC from IEEE Xplore. Restrictions apply.

LI et al.: RRAM-DNN

Global 8Mb L2 Data Cache
1R 1W interface
y

Fig. 2.

Overall architecture of the RRAM-DNN chip.

architecture, each PE has both read/write access to its own
local memory as well as read access to its neighboring PEs’
local memories. The global shared memory is 8 Mb, and it
supports parallel write and read access if the accesses are
pre-partitioned to different memory banks. Due to the large
chip size and the heterogeneous memory hierarchy, different
memories in the architecture have different access latencies.
The local memories including the input and weight buffers
achieve 1 cycle access latency. Accessing neighboring PE’s
memories and the global memory incur access latencies of 2
cycles and 4 cycles, respectively. Moreover, the shared global
memory coalesces multiple accesses by broadcasting data
to all or a subset of four PEs when their read addresses
are identical. In simulation, broadcasting data to coalesced
requests results in ~4x latency reduction when multiple PEs
are fetching the same TA from the global shared memory.

During the execution of a layer function, a PE first loads
a block of IAs from the global shared memory to its local
memory following user-defined memory partitioning. The PE’s
neighbors can share its IA because of the local connectivity
between PEs. The PE then processes the layer function on
the block of inputs with local stored weights. After all OAs
are computed, the PE moves the output block back to the
shared global memory. Each PE may process different data
and execute different instructions, which can lead to a variable
processing latency. Therefore, synchronization is necessary to
ensure correct layer operations when the PEs are collaborating.
The proposed design can be programmed to synchronize all
or a subset of four PEs.

A. Detailed Architecture of the PE

Fig. 3 details the design of a single PE. Inspired by
Li et al. [31], the PE architecture exploits parallelism and data
reusability across different input dimensions to improve energy
efficiency. Each PE has a mesh of 128 8-bit multiply/32-bit
accumulate MAC units in four clusters (each with a grid of
4 x 8 MAC units). Each MAC also contains 32-bit flipflops to
locally store processed partial sums. In total, four PEs have
512 MAC units on chip, enabling massive parallel processing
for compute-intensive CNN operations. Moreover, each PE
processes four input channels (IC), four output channels (OC),
and eight TAs in parallel to maximize the data reusability in
the MAC array. Each PE has its own private 6 Mb RRAM
for parameter storage. During the CNN operation, weights
are first read from the RRAM, decompressed through the
decompression engine, and transferred to small 2-bank,
4-kB interleaved weight buffers for frequent local accesses.

1107
> -~ ! 96b
ittt ————————————————
& | c
(¢) 3 =
5&0 \f LB 7
L BFoP 3 g
B p |g——
b P Q. Ol
b P £ S
b | S w
L (7]
(m]
- '_7‘
‘ 128b‘i«
!
=1
©
5y H £
o) = =
| [
3! = =
! = o
| —
N | _[T1280] =
%
-
s ’ I 2560|
et ettttte’ bbbt 56b)
81A parallel I =
| 4banks, 32kB local buffer | | 32kB Inst cache |
Fig. 3. Detailed architecture of the PE.
. Opcode Input Output Input A Input B Output Weight
valid | Opcode ¢ format format memory memory memory memory
augmen address address address address
le 16 »le—3b 28b. 28b 285 32b 32 325 325 —>)
ADD, Avg/max,
Mov, Stride, SEta;tII:, Local/neighbor/global,
CONV, Filter size, na 16, Bank id, RRAM addr
FC, shift, :t‘:': o Memory addr...
SYNC... Synctype... recol..
Fig. 4. ISA of the proposed RRAM-DNN accelerator.

The MAC array processing and weight decompression occur
concurrently (pipelined) to maximize throughput. Accessing
the small 4 KB weight memory provides 128 bit/cycle
memory access bandwidth with high access energy efficiency.
The 4-bank, 32 kB local buffer stores input and output
activation with 256 bit/cycle access bandwidth. The high
data bandwidth from both the weight buffer and local buffers
ensures the full utilization of the 128 MAC units.

B. Instruction Set Architecture

To control the processing of MAC units for hundreds of
cycles without explicit instruction decoding in each cycle,
256-bit Very long Instruction Word (VLIW) instructions are
used. Moreover, the instructions are stored in the 32 kB
instruction memory of each PE so that it can be programmed
independently to control the processing sequence and synchro-
nization of the DNN algorithm if necessary. Offset (direct)
addressing with respect to each PE’s own base address is
used in the instruction set architecture (ISA) for arithmetic
operations within a PE, including CONV, ADD, and POOL,
to reduce the bit-width of the instructions. Non-offset global
direct addressing is used when the data are moved from/to
the global memory. Fig. 4 details the ISA of the proposed
RRAM-DNN processor. The proposed ISA supports not only
various layer functions such as convolution, pooling, matrix
multiplication, and ReLU, but also flexible layer partition
schemes such as the number of split input and OC. Data
concatenation and scaling can also be achieved through
MOV (move), ADD (addition) instructions.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:05:55 UTC from IEEE Xplore. Restrictions apply.

1108

Subtree 0

Subtree 2

S i

Fig. 5. Parallel Huffman decoder using full subtrees.

C. Decompression Engine

The weight compression algorithm is adopted from [8].
During the training, unimportant weights are pruned to zero
and all non-zero weights are non-uniformly quantized to
64 levels. To compress each weight, we use the Huffman
encoded weight value (one of 64 levels) as well as the run
length of the non-zero weight position. This algorithm com-
presses each weight to bit on average with negligible accuracy
degradation for ResNet-18 [5]. Each PE is equipped with
a decompression engine to decode the compressed weights
stored in the RRAM. Each decompression engine contains two
programmable Huffman tables: one for weight values and the
other for run-length positions. These tables share a parallel
lookup table (LUT)-based decoder. Decompressing Huffman
encoded weight values and run-length positions to meet the
processing bandwidth of the PE is challenging. On the one
hand, decompressing the Huffman encoded 96-bit in a single
cycle requires a logic with very long critical paths (>10 ns)
due to inter-bit dependence in the compressed bit sequence.
On the other hand, if the Huffman decoding was performed
in series with single bit per cycle throughput, an entire weight
packet would cost > 250 cycles to process. Decompression
throughput needs to be balanced with the throughput of
the MAC array which takes 72 cycles for processing eight
rows of 3 x 3 kernel. Therefore, instead of traversing a
binary Huffman tree sequentially by advancing a single bit
per clock cycle, we decode 4 bits in parallel to improve
the performance (Fig. 5) per cycle. This requires storing all
possible 4-bit subtrees (Fig. 6), which are stored in each PE
and programmed through the PE programming interface. The
critical path of decompressing 4 bits in parallel is 3 ns. Note
that the layer-dependent nonuniform weight quantization and
pruning requires reprogramming of these Huffman tables/trees
for each DNN layer. We minimize the programming overhead
by programming multiple PEs simultaneously when they share
the same table.

D. RRAM Weight Storage and Static Error Resiliency

The compressed weights for convolutional layers are stored
in the RRAM as packets shown in Fig. 7. Each packet has a
variable length (because each weight length is variable) and is
split into multiple RRAM words. Each packet contains a layer
specification, Huffman coded weight values, and run-length

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 4, APRIL 2021

On-chip Huffman Table

1280 bits 80 bits

Full subtree 0 . 0000] #ofunusedbits | T
Full subtree 1 0001] o Next tree ptr
0 Full subtree 2 \ 0010 | o Next tree ptr
0 Q
- E Full subtree 3 \ 0011+ # of unused bits
i 2 : :
= : H
@ : \ : :
l I Full subtree n | \ 1100 1 #of unused bits | —
\ 1101 2 # of unused bits
\1111I 1 I # of unused bits v
Fig. 6. On-chip Huffman table for decompression.
Huffman table Weight RRAM
Instruction SRAM, FFs Huffman coded weight + index, ic 0-3, oc 0-3
L T 8b weight Huffman coded weight + index, ic 0-3, oc 0-3
ayer Huffman coded welght + index, ic 4-7, oc 0-3
Spec @ 2
2 =
E uc.l Huffman coded welght + index, ic 124-127, oc 0-3
b > Huffman coded weight + index, ic 0-3, oc 4-7
Filter l :] l
Location I |

pd
[Packet T_|

Packet - variable length

<«—RRAM read word—

Fig. 7. On-chip compressed weight storage in RRAM.

codes for 4 input and 4 OC. The layer specification consists
of the kernel offset and location for weights. We insert this
specification information for every packet to make the system
resilient to RRAM word errors. Since each weight and packet
has variable length, a single RRAM word error can cause
catastrophic decompression failure for subsequent packets.
The proposed packet specification enables faulty word mitiga-
tion by repeating the same packet (including the specification)
twice if the first packet was written on a faulty RRAM word(s).
In that case, the second packet overwrites the first faulty packet
during the decompression process. We assume RRAM word
error locations are static and identifiable before programming
the chip.

III. DATAFLOW OF THE PROPOSED RRAM-DNN CORE

The proposed architecture and ISA support flexible mapping
of heterogeneous DNNs for efficient hardware execution. This
section discusses the various energy-efficient dataflows that
are supported in the proposed architecture. The evaluations of
different dataflows are performed with a python-based cycle
accurate simulator, modeling the behavior of the designed
four-PE system. The simulator pre-allocates weights and
activations onto the PEs and computes corresponding mem-
ory addresses based on a given partitioning scheme. Then,
the simulator profiles the chip behavior/execution trace for
evaluation/verification, and also generates VLIW instructions
(Fig. 4) to control the chip.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:05:55 UTC from IEEE Xplore. Restrictions apply.

LI et al.: RRAM-DNN

Splitting output channels to
different PEs

Global 8Mb L2 Data Cache
1R 1W mﬁerfaoe
S

Infigadmg

/]
’ - J‘

[/]

’ - J‘
Different OCs Concatenate —»,
LA/
. -1
’ - J‘

- Movlng Output —'

Share 1A on
different PEs

m
w

=R
I:L

. Input |

g

Fig. 8. Split convolution onto multiple PEs by OC.

A. Partition Workload Onto PEs by OC

One example of mapping a DNN layer to the architecture
is shown in Fig. 8. The colors in Fig. 8 indicate weight/kernel
mapping of a convolutional layer to the architecture, where the
weights are split by different OC mapped on dedicated PEs.
In this example, the weights are pre-partitioned on these four
PEs, and each PE is programmed to compute different OC
through instructions. Meanwhile, the IAs are partitioned into
8 x 8 blocks, with all associated IC, for processing to match
the local memory capacity in each PE. When the processing
of an 8 x 8 block for all IC finishes, the PE re-organizes
the output and moves it back to the global memory. The
outputs from multiple PEs are concatenated in this process
to form the complete layer output. The timing diagram of
the process is shown in Fig. 8 (bottom). Although each PE
stores only 1/4 of the total weights and also processes only
1/4 of the convolutions, the same complete [As from the
prior layer must be copied to the local memories of each PE.
To minimize this potentially redundant traffic and save data
transfer time, we enable the bus to broadcast IA to all PEs.
In simulation, the combination of IA broadcasting and global
memory access coalescing improves the MAC utilization and
reduces the inference latency by 7% (Fig. 10).

B. Fartition Workload Onto PEs by IC

Another possible mapping of a convolutional layer to dif-
ferent PEs is input channel-based partitioning. In that case,
each PE processes a partial sum of different IC as shown
in Fig. 9. A selected PE merges the results from neighboring
PEs hierarchically and then writes the merged results to
the global memory (Fig. 9, bottom). Thanks to the local
connection between neighboring PEs, no extra data movement
is needed as each PE has read access to each neighboring PE’s
local memory. Similar to the output channel split mapping
in Section III-A, weights are pre-partitioned on these four
PEs and IAs are partitioned into 8 x 8 blocks (and 4 of
all IC) for processing. Compared with splitting the OC, this
input channel partitioning scheme involves uneven workload
distribution among the PEs because a selected PE(s) needs
to perform the extra merge and move operations. This can
potentially lead to idle cycles and low MAC utilizations for the
other PEs. However, the workload can be balanced throughout
the entire convolution layer if the merge and move operations

1109

Splitting input channels to
different PEs

Global 8Mb L2 Data Cache
1R |W interface
H g

Timing diagram

Ian}JtIoaging‘ ; Convolution and

H|erarch|cal
sum among
PEs

Share 1A on
different PEs

_..4'_1]

Partial sum
for ICs

-/

Inputloading #s® CONV I Outputloading Synchonization

Fig. 9. Split convolution onto multiple PEs by IC.
1
0.98 Broadcasting input activations
® 0.96 Overlapping inp on shared bus
1‘ . loading & processing 7% reduction
2 094
o 0.92 2.5%
E; . reduction
g 0.9
= 0.88
S I
= 0.86
-}
ﬂ)
N 0.84
©
£ 082
S
Z o8
Splitting Splitting Splitting IC with overlapping Spllttlng OC with Best
oc Ic processing & loading Combinati
= Convolution " Input loading Output loading Summation
Fig. 10. Optimizing processing latency with multiple PEs (simulation).

are mapped onto all PEs in a round-robin fashion. Because
the TAs are partitioned into 8 x 8 x 4 (IC) blocks per PEs,
and typically there are >64 blocks in a layer, the workload
can be balanced for the overall layer. This workload balancing
scheme improves the overall MAC array utilization by 2.5%.
Fig. 10 summarizes the different workload partitioning meth-
ods and their impacts on MAC utilization with ResNet-18.

Each individual layer in the network can be separately
programmed for the best workload partitioning based on the
layer characteristic. For the ResNet-18 example shown, 8%
overall latency reduction can be achieved with layer-dependent
best combinations of aforementioned partitioning schemes
compared to a naive approach (Fig. 10).

C. Data Reuse for Efficient Convolution Processing

Convolution operations on a single PE are optimized with
massive parallelism and data-reuse. Similar to the CNN design
in [31], each PE consists of four clusters of 8 x4 MAC arrays,
processing eight consecutive pixels and four consecutive IC
in parallel. Partial convolution is performed with shifting IAs
using a row of 8 MAC units with k (kernel size) cycles. This
operation is repeated on the second and third row of IAs
to complete the 2-D convolution. The pooling operations are
performed in the same fashion except that MAC is replaced by
Max in the 128 MAC units. Partial products in 2-D convolution
are accumulated locally in each MAC unit to improve the
energy efficiency without unnecessary memory accesses.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:05:55 UTC from IEEE Xplore. Restrictions apply.

1110

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 4, APRIL 2021

TABLE 1
ol |BL&SI
EXAMPLE OF APPLY COMPRESSION SCHEME ON RESNET18 =]
m 8 m=
Total number non-zeros Weij - -g - -g E Array
- ight Index Top-1 Top-5 |C Array g = s = BLIO
parameters (TNZ) bitwidth (w) | bitwidth (r)| Error Error on rate g >C< cﬁn E 256x1024 []
. ., - - g
Baseline C‘F’g‘: 'azfs',sblsol':?“';:i':;:" FP32 - 28.22% | 9.42% = RRAM
ayers: 0. % = cell
N Conv layers: 4.565 million T |
Pruning . FP32 - 28.20% | 9.42% I_
FC layers: 0.094 mill . .
ayers million WL Driver | WL Driver | }—|s|_
Pruning + Quantization | 0NV lavers: 4.565 million INT8 - 2817% | .40% 2 o Timing & P
FC layers: 0.094 million a Jl Global Hr B I—
Pruning + Quantization | Conv layers: 4.565 million E e CTRL e Fn’
+ Runlength coding FC layers: 0.094 million INT8 INTS 287% | 940% 6.08x WL Driver WL Driver
Pruning + Quantization X - I I I
+ Runlength coding + | Con 1avers: 4.565 million 55 24 | 2817%| 9.40% | 10.01x =
huffman codin FC layers: 0.094 million o - ol
£ mg | = 51 [m8 o= BL[1]
* * Ealka Q| e gg WL[0] WL[1]
Bit/weight = (r + w) *TNZ-conv + (r +w) * TNZ-fc Array S = [N g = Array]
ght = TNZ-uncompressed N E g' > P N E (b)
(] < = [
> | o = | R0
(B e = (a)
|0uter product based sparse FC on PEsl LA Ry
Fig. 12. (a) RRAM bank architecture (b) Common SL arrangement.

B-BE

Sparse FC Dense 1A
matrix vector

X) Dense Sumation of

| Compressed FC Storage Format | ial
partial outputs

[Nextic | Nextx | Nexty [WO,bankO0, oc]W1, bank 1, oc|W3, bank 2, ocJW1, bank 2, oc| «v...e

Fig. 11. Sparse FC operation of the RRAM-DNN design.

D. Data Reuse for Efficient Processing of Sparse Fully
Connected Layers

The compressed weights for the FCL are very sparse,
with typically less than 20% density [8] (Table I), whereas
the TAs for the fully connected layers (FCL) are densely
populated. Inspired by Subhankar er al, [32], we deploy
outer-product-based matrix vector multiplication to efficiently
compute the FCL and skip all zero multiplications. Similar to
the convolution operation, sparse FCL weights are stored in
the compressed format and are pre-partitioned onto each PE
during the compile time to enable highly parallelized process-
ing with multiple PEs (Fig. 11). Different from convolution
layers, weights for FCL are only pruned and quantized without
Huffman coding to increase the decompression rate to match
the throughput of parallelized processing without weight reuse.
During processing, each element of IAs is multiplied with
sparse non-zero weights from RRAM in each PE. Partial
outputs are then accumulated and stored in the accumulators
depending on the location of the non-zero weights. As multiple
PEs finish processing subsets of an FCL, selected PEs merge
the FCL output hierarchically and write the results to the
global memory.

IV. COMPRESSED MODEL FOR SIMULATION
AND MEASUREMENTS

To enable the single-chip implementation for DNN models,
we leverage an idea from a state-of-the-art deep compression
scheme [8] for compressing DNN models. However, the com-
pression scheme also has to be co-designed to maximize the
performance and efficiency of the architecture. The convolu-
tion layers typically require less bandwidth to decompress
weights because each weight can be reused over multiple
cycles for different input—-OAs. Therefore, the weights for

convolution layers are pruned, non-linearly quantized with
64 weight centroids and run-length coded using 5-bit codes to
achieve maximum compression. On the other hand, weights
are only used once for FCL. Thus, it is necessary to simplify
the compression scheme to balance the weight decompression
throughput with the FCL computation throughput. The weights
for FCL in our design are pruned without any entropy cod-
ing. On average, the proposed compression scheme achieves
~5.5 bit per weight in convolution layers and 2.4 bit per
weight in FC layers. Table I shows an example of applying the
compression on ResNetl8 when trained and evaluated under
the ImageNet data set [2]. Pruning the weights reduces the
model size of the convolution layers by 68% and FCL by 82%.
Run-length coding and Huffman coding further compress the
pruned convolution layers by 40% (from 8-bit weight and
5-bit run-length to 5.5-bit weight and 2.4-bit run-length for
non-zero weights). With both methods combined, the average
bits/weight is 3.2.

After the proposed weight compression, the DNN model
exhibits negligible accuracy degradation compared with 8-bit
uncompressed weights under ImageNet [2] evaluation.

V. CUSTOMIZED RRAM MEMORY

The 1 Mb custom-designed RRAM bank uses a butterfly
architecture, as shown in Fig. 12(a), which is composed of four
256 x 1024 RRAM arrays with 32 b word length. The three
colors denote the three main power domains used in the bank
for testing flexibility: 1.4 V for the word line (WL, green),
1.25 V for the column mux (red), and 1 V for the sense ampli-
fier (SA) and ctrl (blue). The RRAM array employs a common
source line (SL) cell arrangement [33]. Thus, the column-wise
peripherals include an equalizer [Fig. 12(b)] to virtually short
the half-selected column when the other one is being written.

A. Dynamic Clamping Offset-Canceling SA

RRAM typically suffers from high variation in cell resis-
tance which can vary by 2~10x for the low resistance state
and 5~100x for the high resistance state [34], leaving a
small sensing margin on sensing circuits. To address the high

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:05:55 UTC from IEEE Xplore. Restrictions apply.

LI et al.: RRAM-DNN

E’I%-:\ \\ Gain

[l Tos _ os{ [j
\.Difffc = | Doubling =Diff_C§
. Diff_CS Diff_CS
Diff CSB 0sS Diff CSE
P 4

Dynamic
Clamping

Reel

wil

Fig. 13. Proposed DCOCSA.

0°c
0.2
0.15
0.1
0.05
0
-1 -0.5 0 0.5 1

PDF

o2 75°C _
' Tosf 4+
0.15 b ‘
2 o e
0.1 o ‘
5 .05
0.05 2 1 1 1
0 0 25 75
-1 0.5 0 0.5 1 Temperature(°C)
Input Offset (zA)

Fig. 14. DCOCSA input current offset MC simulation distribution.

variation nature of the RRAM, the two-stage offset-canceling
current-mode SA shown in Fig. 13 is proposed. The first stage
is composed of two cross-coupled current sampling branches
similar to the scheme in [35], which doubles the input current
difference and effectively halves the offset. In addition, the first
stage incorporates dynamic clamping, instead of typical static
clamping, to bring down the bitline settling time and increase
the sensing speed. Unlike conventional clamping amplifiers,
which are large and power hungry, a carefully designed
self-biased inverter provides the feedback loop. The settling
time is reduced by 50% (simulation) compared to a static
clamping SA under the same load. The second stage provides
further amplification and offset-reduction with a single-cap
auto-zero regenerative amplifier [26].

Fig. 15(a) details the operation of the proposed SA.
In step @, the input and output of the inverter are shorted to
self-bias the clamp transistors, with bias voltage sampled on
the Ci’s. Meanwhile, the regenerative amplifier of the second
stage is also shorted to sample the offset and cancel it out in
the following steps. This step overlaps with address decoding
to avoid a timing penalty. Then, in step @, the shorted
inverter in phase one is disconnected to function as a negative

1111

feedback amplifier, and the WL is turned on to allow the
two diode-connected PMOS headers to sample the currents
I and I on their respective branches. After the current
settles, in step @, the two headers are switched to the other
branch and function as a current source, which generates
current difference I.e; — It on both input nodes of the second
stage. However, note that the directions of the two current
differences are opposite, which effectively doubles the current
difference of the input to the second stage to 2(leen — lref)-
Finally, in step @, the second stage is fired and latches the
output. The voltage waveforms of the internal nodes are shown
in Fig. 15(b). A sub-microampere current offset is achieved at
21 puA common mode input under 1.2 V VDD from Monte
Carlo (MC) simulation with 500 samples; Fig. 14 gives the
offset distribution at different temperatures.

B. Write-Verify Process

RRAM also suffers from variation in write time. At a fixed
write voltage, the write time of slow cells and fast cells can
differ by more than 100x [36]. Thus, applying a write pulse of
the same length to both fast and slow cells causes unnecessary
power and endurance losses on the fast cell. So, a fine-
grained iterative Write-Verify control is adopted. Each bit in a
word is separately controlled based on the read result, ruling
out correlation between fast and slow cells, which alleviates
locality-dependent variation. Furthermore, with Write-Verify,
each cell automatically adapts to the corresponding SA offset,
further reducing the locality dependence.

Fig. 15(c) illustrates the block diagram of the Write-Verify
control. Following a write request, each RRAM cell of the
target address is read out first to compare with the input
data (DG) initiated by the global control. If the read-out
value (d) of a cell is the same as the corresponding bit in DG,
the write process of that cell concludes for better endurance.
On the other hand, the cell is programmed to the desired value
by the iterative Write-Verify process.

VI. MEASUREMENT

We implement the proposed accelerator in 22 nm ULL
CMOS technology with each PE of size 1614 x 1394 um?
and each 1 Mb RRAM bank of size 235 x 514 um? as shown
in the die photograph [Fig. 16 (a)]. The test chip achieves
120 MHz core clock frequency at 0.8 V VDD and consumes
42.4 mW when evaluating a CNN layer of size 4 x 3 x 3 x 16
as depicted in the measured power/frequency versus VDD plot
[Fig. 16(b)] for core digital logic, which is everything except
the RRAM banks.

In the implementation, the RRAM clock is hard coded to
be half of the core clock; the RRAM operates at 60 MHz
for the 120 MHz core frequency. A power breakdown of the
four RRAM power domains is shown in Fig. 17(a), with 1V
for the SA and control, 1.4 V for the WL, 1.25 V for the
column mux, and 1.1 V for the inverter amplifier, noting that
this breakdown includes the effect of the possible static errors
in RRAM. A measured RRAM resistance distribution across
~10 k cells randomly sampled from the 24 banks in one test
chip at room temperature is shown in Fig. 17(b). The proposed

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:05:55 UTC from IEEE Xplore. Restrictions apply.

1112

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 4, APRIL 2021

20%

Icell oS _[_‘I : : I’_
WL,
Diff CS
SA_BL_SW
SA_EN
ck f [
T sAd _ | < 1c, VOUT—N R
VBL T VRBL ose -[osl VOUTB...}" /4
BL | 0s Iwatehing Reell 1 VBL
cap! 08 0s! cap wdl -'I'- I et VRBL ™=
= = = = = = = = @ @ (b) @ @
-'-? E = £ E' CLK
Ireil/ II’-T ® H \L'CQ” o ® H K62 Y.oooon Start
! —e Write
: Local end :
Diff CSB Diff CSB, Diff CSB Diff CSB W"te oc'i = wrlte enable
Local | betiReset | Global f«-"Pu!
Icell-Iref ctrl F2e ! ctrl Data 320
cell-Iref —t
Icell-Iref DG:32b ReaLdl
SA BL_SW k]
K& CLK ¢
Icell 3= —— m
Cell d [Read] : | Read
s L. |Local H th:lal
Reell driver BL &| Ctrl & T‘?::ﬂ& Py
imin
wil L] SA : o Timing
=] ()
Fig. 15. (a) Operation and (b) timing of DCOCSA and (c) Write-Verify Signal Flow.
140 FPOWer/Freq. VS core digital VDD__ TABLE II
COMPARISON TO OTHER WORKS
Freq.
e 3 120 This Work |QUEST[12]| SNAP[37] |STICKER[16]|UNPU[11] |Envision[38]
_ 100 |00 Technology | ULL 22nm | 40nm 16nm 65nm 65nm | 28FD-SOI
3 z On-chip | 3M RRAM |7.68M+36M
€ 80 so I :
- £ RAM(B) | 1.3M SRAM | 3D SRAM 280.6K 170K 256K 148K
£ 60 , 180 § Max On-chip| 16M@8b [15.36M@ 4b|140.3K@16b| 170K@8b |256K@8b | 148K@8b
o Dynam - Weight | Non-Volatile | Volatile | Volatile Volatile | Volatile | Volatile
40 40 _chil
Bl No Yes Yes Yes Yes Yes
20 Static |20 Merory
MACs 4x128 24x512 252 256 4x576 256
o : o (8x8b) | (1x1blog) | (16x16b) (8x8b) | (1x16b) | (8x8b)
(b) VoOWV) Vaage (V) o~ 2 oW 14| 05508 | 06740 06341 | 105
Fig. 16. (a) Die Phot h and (b /F VDD f
dilgital 10gi(§.) ie Photograph and (b) power/Frequency versus or core Freq, (VH2) (:g:cRé:\: 300 33480 20200 200 200
Distribution of RRAMVS current TOPS/W | *0.96@8b | 10.59@4b |#3.61@16b | 1.038@8b |¥5.57@8b | +1@8b
0.45
Power Breakdown of RRAM GOPS 123@8b | 1960@4b |65.52@16b | 102@8b | 690@8b | 102@8b
1% " pover ()] 1279 3300 364 844 | 297 I
038 @120MHz | @300MHz | @480MHz | @200MHz |@200MHz | @200MHz
w :Fzss | Cr(‘:ﬁnﬁ\{)ea 108 122 24 12 16 187
°LL 0.25 samples
g *Including power of loading weights from RRAM to SRAM and MAC
02 I Including power of |oading weights from 3D SRAM to on-chip SRAM & MAC

L Drive
18.2mW " LRS
0.05 6320 samples
(@) 2%
o | |] |
0 1 2 3 4 5 6 1
(b) Normalized Unit
Fig. 17. (a) RRAM power breakdown and (b) measured RRAM resistance

distribution.

accelerator consumes 127.9 mW in total, including weight
decompression and transfer from RRAM to SRAM, resulting
in a power efficiency of 0.96 TOPS/W. Table II compares the

Excluding power of loading weights from off-chip memory

work to recent NN accelerators. The proposed design achieves
the highest number of on-chip stored weights due to the model
compression and better density of RRAM and is also the only
design employing non-volatile memory as dedicated weight
storage, thereby reducing standby power for edge devices.

VII. CONCLUSION

In summary, we present the first energy-efficient digital
DNN accelerator featuring RRAM for dedicated weight

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:05:55 UTC from IEEE Xplore. Restrictions apply.

LI et al.: RRAM-DNN

storage to enable efficient single-chip inference of NN models

for
we
To

mobile devices. Using on-the-fly weight decompression,
achieve a total capacity of 16 M 8 bit weights on chip.
reliably read from and write to the RRAM, we propose

a DCOCSA achieving sub-microampere input-sensing offset.
Together, these techniques help us eliminate fully off-chip
weight access. The proposed processor is prototyped and

me

asured in TSMC 22 nm ULL with RRAM technology. This

design supports single-chip NN model inference with ~16 mil-
lion parameters. It achieves 123 GOPs throughput in real-time,
consuming 127.9 mW from a 0.8 V supply, with measured

0.9
hig

6 TOPS/W efficiency. The proposed design achieves the
hest number of on-chip-stored weights and is also the only

design employing non-volatile memory as dedicated weight
storage, reducing standby power for edge devices.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

REFERENCES

F. Rosenblatt, “The perceptron—A perceiving and recognizing automa-
ton,” Cornell Aeronaut. Lab., Buffalo, NY, USA, Tech. Rep. 85-460-1,
1957.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Miami, FL, USA, Jun. 2009, pp. 248-255, doi:
10.1109/CVPR.2009.5206848.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097-1105.

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778.

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer para-
meters and >0.5 MB model size,” 2016, arXiv:1602.07360. [Online].
Available: http://arxiv.org/abs/1602.07360

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510-4520.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and Huffman coding,” 2015, arXiv:1510.00149. [Online]. Available:
http://arxiv.org/abs/1510.00149

E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting
linear structure within convolutional networks for efficient evaluation,”
in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1269-1277.

Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127-138,
Jan. 2017, doi: 10.1109/JSSC.2016.2616357.

J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU:
A 50.6TOPS/W unified deep neural network accelerator with 1b-to-
16b fully-variable weight bit-precision,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2018,
pp. 218-220, doi: 10.1109/ISSCC.2018.8310262.

K. Ueyoshi et al., “QUEST: A 7.49TOPS multi-purpose log-quantized
DNN inference engine stacked on 96 MB 3D SRAM using inductive-
coupling technology in 40 nm CMOS,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2018,
pp. 216-218, doi: 10.1109/ISSCC.2018.8310261.

S. Bang et al., “14.7 A 288 uW programmable deep-learning proces-
sor with 270 KB on-chip weight storage using non-uniform memory
hierarchy for mobile intelligence,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2017,
pp. 250-251, doi: 10.1109/ISSCC.2017.7870355.

B. Moons and M. Verhelst, “A 0.3-2.6 TOPS/W precision-scalable
processor for real-time large-scale ConvNets,” in Proc. IEEE Symp.
VLSI Circuits, Honolulu, HI, USA, Jun. 2016, pp. 1-2, doi:
10.1109/VLSIC.2016.7573525.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

1113

P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, and
G.-Y. Wei, “14.3 A 28 nm SoC with a 1.2 GHz 568nJ/prediction sparse
deep-neural-network engine with >0.1 timing error rate tolerance for
IoT applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, San Francisco, CA, USA, Feb. 2017, pp. 242-243, doi:
10.1109/ISSCC.2017.7870351.

Z. Yuan et al, “Sticker: A 0.41-62.1 TOPS/W 8bit neural net-
work processor with multi-sparsity compatible convolution arrays and
online tuning acceleration for fully connected layers,” in Proc. IEEE
Symp. VLSI Circuits, Honolulu, HI, USA, Jun. 2018, pp. 33-34, doi:
10.1109/VLSIC.2018.8502404.

Y.-H. Chen, T.-J. Yang, J. S. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” [EEE
J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292-308, Jun. 2019,
doi: 10.1109/JETCAS.2019.2910232.

Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Com-
pression of deep convolutional neural networks for fast and low power
mobile applications,” 2015, arXiv:1511.06530. [Online]. Available:
http://arxiv.org/abs/1511.06530

Z. Li, “Energy-efficient, mobile computer vision and machine
learning processors,” Ph.D. dissertation, Deepblue, Univ. Michigan,
Ann Arbor, MI, USA, 2019. [Online]. Available: http://hdl.handle.
net/2027.42/151423

M.-F. Chang et al., “An asymmetric-voltage-biased current-mode sens-
ing scheme for fast-read embedded flash macros,” IEEE J. Solid-
State Circuits, vol. 50, no. 9, pp.2188-2198, Sep. 2015, doi:
10.1109/JSSC.2015.2424972.

S. Yu and P.-Y. Chen, “Emerging memory technologies: Recent trends
and prospects,” IEEE Solid State Circuits Mag., vol. 8, no. 2, pp. 43-56,
Spring 2016, doi: 10.1109/MSSC.2016.2546199.

C.-P. Lo et al., “A ReRAM macro using dynamic trip-point-mismatch
sampling current-mode sense amplifier and low-DC voltage-mode write-
termination scheme against resistance and write-delay variation,” IEEE
J. Solid-State Circuits, vol. 54, no. 2, pp. 584-595, Feb. 2019, doi:
10.1109/JSSC.2018.2873588.

T. F. Wu et al., “14.3 A 43pl/cycle non-volatile microcontroller with
4.7 ps shutdown/wake-up integrating 2.3-bit/cell resistive RAM and
resilience techniques,” in IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2019, pp. 226228,
doi: 10.1109/ISSCC.2019.8662402.

S. R. Lee et al., “Multi-level switching of triple-layered TaOx RRAM
with excellent reliability for storage class memory,” in Proc. Symp.
VLSI Technol. (VLSIT), Honolulu, HI, USA, Jun. 2012, pp. 71-72, doi:
10.1109/VLSIT.2012.6242466.

L. Wei et al., “13.3 A 7 Mb STT-MRAM in 22FFL FinFET technology
with 4ns read sensing time at 0.9 V using write-verify-write scheme and
offset-cancellation sensing technique,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2019,
pp. 214-216, doi: 10.1109/ISSCC.2019.8662444.

Q. Dong et al., “A 1-Mb 28-nm ITIMTJ STT-MRAM with single-
cap offset-cancelled sense amplifier and in situ self-write-termination,”
IEEE J. Solid-State Circuits, vol. 54, no. 1, pp. 231-239, Jan. 2019, doi:
10.1109/JSSC.2018.2872584.

G. De Sandre et al., “A 90 nm 4 Mb embedded phase-change memory
with 1.2 V 12ns read access time and 1 MB/s write throughput,” in [EEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco,
CA, USA, Feb. 2010, pp. 268-269, doi: 10.1109/ISSCC.2010.5433911.
C.-X. Xue et al., “Embedded 1-Mb ReRAM-based computing-in- mem-
ory macro with multibit input and weight for CNN-based Al edge
processors,” IEEE J. Solid-State Circuits, vol. 55, no. 1, pp. 203-215,
Jan. 2020, doi: 10.1109/JSSC.2019.2951363.

W.-H. Chen et al., “A 65 nm 1 Mb nonvolatile computing-in-memory
ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN
Al edge processors,” in IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2018, pp. 494-496,
doi: 10.1109/ISSCC.2018.8310400.

Z. Wang et al., “An all-weights-on-chip DNN accelerator in 22 nm
ULL featuring 24 x 1 mb eRRAM,” in Proc. IEEE Symp. VLSI
Circuits, Honolulu, HI, USA, Jun. 2020, pp. 1-2, doi: 10.1109/VLSI-
Circuits18222.2020.9162811.

Z. Li et al., “An 879GOPS 243 mW 80fps VGA fully visual CNN-
SLAM processor for wide-range autonomous exploration,” in [EEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Fran-
cisco, CA, USA, Feb. 2019, pp. 134-136, doi: 10.1109/ISSCC.2019.
8662397.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:05:55 UTC from IEEE Xplore. Restrictions apply.

1114

[32] S. Pal et al., “OuterSPACE: An outer product based sparse matrix
multiplication accelerator,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2018, pp. 724-736.

[33] C.-C. Chou et al., “An N40 256 x 44 embedded RRAM macro with
SL-precharge SA and low-voltage current limiter to improve read and
write performance,” in /IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, San Francisco, CA, USA, Feb. 2018, pp. 478480, doi:
10.1109/ISSCC.2018.8310392.

[34] A. Chen and M. Lin, “Variability of resistive switching memories
and its impact on crossbar array performance,” in Proc. Int. Rel.
Phys. Symp., Monterey, CA, USA, Apr. 2011, pp. MY.7.1-MY.7.4, doi:
10.1109/IRPS.2011.5784590.

[35] P. Jain er al., “13.2 A 3.6 Mb 10.1 Mb/mm? embedded non-volatile
ReRAM macro in 22 nm FinFET technology with adaptive form-
ing/set/reset schemes yielding down to 0.5 V with sensing time of
5 ns at 0.7 V,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, San Francisco, CA, USA, Feb. 2019, pp. 212-214, doi:
10.1109/ISSCC.2019.8662393.

[36] M.-F. Chang et al., “Low VDDmin swing-sample-and-couple sense
amplifier and energy-efficient self-boost-write-termination scheme for
embedded ReRAM macros against resistance and switch-time varia-
tions,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2786-2795,
Nov. 2015, doi: 10.1109/JSSC.2015.2472601.

[37] J.-F. Zhang, C.-E. Lee, C. Liu, Y. S. Shao, S. W. Keckler, and Z. Zhang,
“SNAP: A 1.67-21.55TOPS/W sparse neural acceleration processor for
unstructured sparse deep neural network inference in 16 nm CMOS,” in
Proc. Symp. VLSI Circuits, Kyoto, Japan, Jun. 2019, pp. C306-C307,
doi: 10.23919/VLSIC.2019.8778193.

[38] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “14.5 envi-
sion: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28 nm
FDSOL,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, San Francisco, CA, USA, Feb. 2017, pp.246-247, doi:
10.1109/ISSCC.2017.7870353.

Ziyun Li (Member, IEEE) received the B.S.
and Ph.D. degrees in electrical and computer
engineering from the University of Michigan, Ann
Arbor, MI, USA, in 2014 and 2019, respectively.
/ His is currently with Facebook, Redmond,
4 WA, USA. His research interests include high-
performance, energy-efficient computer vision/
machine learning processing units to enable next
generation intelligent, autonomous vision system
for AR/VR.
Dr. Li was a recipient of the Best Paper Award at
the 2016 IEEE Workshop on Signal Processing Systems.

Zhehong Wang (Graduate Student Member, IEEE)
received the B.E. degree in electronics and
information engineering from Zhejiang University,
Hangzhou, China, in 2016, and the M.S. degree
from the University of Michigan, Ann Arbor,
MI, USA, in 2019. He is currently pursuing the
Ph.D. degree in electrical and computer engineering
with the University of Michigan, Ann Arbor, MI,
USA.

His current research interests include application-
oriented ASIC, such as DNA sequencing, Machine
Learning, Fully Homomorphic Encryption, and emerging memory design.

Li Xu (Graduate Student Member, IEEE) received
the B.Eng. degree in automation from Tongji Uni-
versity, Shanghai, China, in 2009, and the M.S.
degree in the electrical and computer engineering
from Northeastern University, Boston, MA, USA,
in 2016. He is currently pursuing the Ph.D. degree
with the University of Michigan, Ann Arbor, MI,
USA.

From 2009 to 2011, he was an IC Design Engineer
at Ricoh Electronic Devices Shanghai Co., Ltd.,
Shanghai, China, where he worked on LDO and
dc/dc converter projects. During 2015, he was a Design Intern at Linear
Technology Corporation, Colorado Springs, CO, USA. His current research
interest is energy-efficient mixed-signal circuit design.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 4, APRIL 2021

Qing Dong (Member, IEEE) received the B.S. and
M.S. degrees in microelectronics from Fudan Uni-
versity, Shanghai, China, in 2010 and 2013, respec-
tively, and the Ph.D. degree in electrical engineering
from the University of Michigan, Ann Arbor, MI,
USA, in 2017.

He is currently with TSMC, San Jose, CA, USA.
His current research interests include memory circuit
design.

Dr. Dong was a recipient of the Best Paper
Awards at 2012 IEEE International Conference on

Solid-State and Integrated Circuit Technology, 2015 IEEE International Sym-
posium on Circuits and Systems, and 2016 IEEE Symposium on Security and
Privacy.

Bowen Liu (Graduate Student Member, IEEE)
received the M.S. degree in electrical engineer-
ing and computer science from the University of
Michigan, Ann Arbor, MI, USA, in 2018, where
he is currently pursuing the Ph.D. degree with the
Department of Electrical Engineering and Computer
Science (EECS).

His research interests include deep learning, com-
puter vision, signal processing, and their applications
in low-power systems.

Chin-I Su (Member, IEEE) received the M.S. degree
in electrical and control engineering from National
Chiao Tung University, Hsinchu, Taiwan, in 2015.

He joined TSMC in 2015 until now. He is currently
a RRAM Macro Design Engineer.

Wen-Ting Chu (Member, IEEE) received the Ph.D.
degree from the Department of Electrical Engineer-
ing, National Taiwan University, Taipei, Taiwan.

In 1997, he joined TSMC Hsinchu, Taiwan, and
he works on embedded memory technology develop-
ment including flash, and emerging memories. He is
currently an TSMC Academician.

George Tsou (Member, IEEE) received the M.S.E.E
degree from National Taiwan University, Taipei,
Taiwan, in 1992.

He joined Ti-Acer in 1994 and contributed in
Product Engineering and SPICE modeling. Since
1998, he has been with TSMC. During 22 years
with TSMC, he was engaged in SPICE modeling
and memory circuit design. He has contributed to
circuit design for DRAM, MRAM, and RRAM.
He is currently a Manager responsible for RRAM
macro design. He holds 48 U.S. patents.

Yu-Der Chih (Member, IEEE) received the B.S.
degree in physics from National Taiwan University,
Taipei, Taiwan, in 1988, and the M.S. degree in
electronics engineering from National Tsing-Hua
University, Hsinchu, Taiwan, in 1992.

From 1992 to 1997, he was a Design Engineer of
Ethernet transceiver circuit for data communication
and a Circuit Design Engineer for SDRAM with
TSMC, Hsinchu. In 1997, he joined TSMC, for the
development of embedded non-volatile memory IP
including embedded flash, OTP, MTP, and emerging

memory. He is a TSMC Academician and is currently a Director of the
Embedded Nonvolatile Memory Library Department in the Memory Solution
Division.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:05:55 UTC from IEEE Xplore. Restrictions apply.

LI et al.: RRAM-DNN

Tsung-Yung Jonathan Chang (Fellow, IEEE)
received the B.S. degree in electrical engineering
from National Taiwan University, Taipei, Taiwan,
and the M.S. and Ph.D. degrees in electrical engi-
neering from Stanford University, Stanford, CA,
USA.

He was a Principal Engineer at Intel, Santa Clara,
CA, USA, responsible for second/third level caches
for Enterprise server processors. He is a Director
leading memory IP development at TSMC, Hsinchu,
Taiwan. He is responsible for delivering SRAM
compilers, custom SRAM IPs, efuse and OTP for low power, high speed
applications for advance technology nodes. He has published 30+ technical
papers in IEEE conferences or journals and held 25 patents in embedded
memory design.

Dr. Chang serves as the memory subcommittee chair for 2019/2020 ISSCC,
TPC members of ISSCC, VLSI, Associate and Guest Editors of Journal of
Solid State Circuits, and Associate Editor of IEEE TRANSACTION ON VERY
LARGE SCALE INTEGRATION (VLSI) SYSTEMS.

Dennis Sylvester (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from the University
of California, Berkeley, CA, USA, in 1999.

He is a Professor of Electrical Engineering and
Computer Science at the University of Michigan,
Ann Arbor, MI, USA, where he was a Direc-
tor of the Michigan Integrated Circuits Laboratory
(MICL), a group of ten faculty and 704 graduate
students. He has held Research Staff positions in the
Advanced Technology Group of Synopsys, Moun-
tain View, CA, USA, Hewlett-Packard Laboratories,
Palo Alto, CA, USA, and Visiting Professorships at the National University
of Singapore, Singapore, and Nanyang Technological University, Singapore.
He has published over 500 articles along with one book and several book
chapters. He holds 43 US patents. His research interests include the design
of millimeter-scale computing systems and energy efficient near-threshold
computing. He serves as a Consultant and Technical Advisory Board Member
for electronic design automation and semiconductor firms in these areas.
He co-founded Ambiq Micro, Austin, TX, USA, a fabless semiconductor
company developing ultralow power mixed-signal solutions for compact
wireless devices.

Dr. Sylvester received an NSF CAREER Award, the Beatrice Winner Award
at ISSCC, an IBM Faculty Award, an SRC Inventor Recognition Award, and
ten best paper awards and nominations. He was named one of the Top Con-
tributing Authors at ISSCC, most prolific author at IEEE Symposium on VLSI
Circuits, and was awarded the University of Michigan Henry Russel Award for
distinguished scholarship. He serves on the Technical Program Committee for
the IEEE International Solid-State Circuits Conference and on the advisory
committee for the IEEE Solid-State Circuits Society. He serves/has served
as Associate Editor for the IEEE JOURNAL OF SOLID-STATE CIRCUITS,
IEEE TRANSACTIONS on COMPUTER-AIDED DESIGN (CAD), and IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS
and was an IEEE Solid-State Circuits Society Distinguished Lecturer from
2016 to 2017. His dissertation was recognized with the David J. Sakrison
Memorial Prize as the most Outstanding Research in the EECS Department,
UC-Berkeley, Berkeley.

1115

Hun-Seok Kim (Member, IEEE) received the B.S.
degree in electrical engineering from Seoul National
University, Seoul, South Korea, in 2001, and the
M.S. and Ph.D. degrees from the University of Cali-
fornia, Los Angeles (UCLA), CA, USA, in electrical
engineering, both in 2010.

He was a Technical Staff Member at Texas Instru-
ments, Dallas, TX, USA, from 2010 to 2014. He is
currently an Assistant Professor with the University
of Michigan, Ann Arbor, MI, USA. His research
focuses on system analysis, novel algorithms, and
efficient VLSI architectures for low-power/high-performance wireless commu-
nication, signal processing, computer vision, and machine learning systems.

Dr. Kim was a recipient of the 2018 Defense Advanced Research Projects
Agency (DARPA) Young Faculty Award (YFA). He serves as an Associate
Editor for the IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND
NETWORKING, and IEEE SOLID STATE CIRCUITS LETTERS.

David Blaauw (Fellow, IEEE) received the B.S.
degree in physics and computer science from Duke
University, Durham, NC, USA, in 1986 and the
Ph.D. degree in computer science from the Univer-
sity of Illinois at Urbana-Champaign, Champaign,
IL, USA, in 1991.

Until 2001, he was with Motorola, Inc., Austin,
TX, USA, where he was the Manager of the High
Performance Design Technology Group and. Since
2001, he has been the Faculty of the University
of Michigan, Ann Arbor, MI, USA, where he is
the Kensall D. Wise Collegiate Professor of EECS and the Director of the
Michigan Integrated Circuits Lab. He has published over 600 papers, has
received numerous best paper awards and holds 65 patents. He has performed
extensive research in ultralow-power computing using subthreshold operation
and analog circuits for millimeter sensor systems, which was selected by the
MIT Technology Review as one of the year’s most significant innovations.
For high-end servers, his research group introduced so-called near-threshold
computing, which has become a common concept in semiconductor design.
Most recently, he has pursued research in cognitive computing using analog,
in-memory neural-networks for edge-devices and genomics acceleration for
precision health.

Dr. Blaauw received the 2016 SIA-SRC Faculty Award for lifetime research
contributions to the U.S. semiconductor industry and won the Motorola Inno-
vation Award. He was the General Chair of the IEEE International Symposium
on Low Power, the Technical Program Chair for the ACM/IEEE Design
Automation Conference, and serves for the IEEE International Solid-State
Circuits Conference’s technical program committee.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 27,2022 at 18:05:55 UTC from IEEE Xplore. Restrictions apply.

