
SquiggleFilter: An Accelerator for Portable Virus Detection
Tim Dunn∗

timdunn@umich.edu
University of Michigan
Ann Arbor, MI, USA

Harisankar Sadasivan∗
hariss@umich.edu

University of Michigan
Ann Arbor, MI, USA

Jack Wadden
jackwadden@gmail.com
University of Michigan
Ann Arbor, MI, USA

Kush Goliya
kgoliya@umich.edu

University of Michigan
Ann Arbor, MI, USA

Kuan-Yu Chen
knyuchen@umich.edu
University of Michigan
Ann Arbor, MI, USA

David Blaauw
blaauw@umich.edu

University of Michigan
Ann Arbor, MI, USA

Reetuparna Das
reetudas@umich.edu
University of Michigan
Ann Arbor, MI, USA

Satish Narayanasamy
nsatish@umich.edu

University of Michigan
Ann Arbor, MI, USA

ABSTRACT
The MinION is a recent-to-market handheld nanopore sequencer.
It can be used to determine the whole genome of a target virus in a
biological sample. Its Read Until feature allows us to skip sequenc-
ing a majority of non-target reads (DNA/RNA fragments), which
constitutes more than 99% of all reads in a typical sample. However,
it does not have any on-board computing, which significantly limits
its portability.

We analyze the performance of a ReadUntil metagenomic pipeline
for detecting target viruses and identifying strain-specific muta-
tions. We find new sources of performance bottlenecks (basecaller
in classification of a read) that are not addressed by past genomics
accelerators.

We present SquiggleFilter, a novel hardware accelerated dy-
namic time warping (DTW) based filter that directly analyzes Min-
ION’s raw squiggles and filters everything except target viral reads,
thereby avoiding the expensive basecalling step. We show that
our 14.3W 13.25mm2 accelerator has 274× greater throughput and
3481× lower latency than existing GPU-based solutions while con-
suming half the power, enabling Read Until for the next generation
of nanopore sequencers.
ACM Reference Format:
Tim Dunn, Harisankar Sadasivan, Jack Wadden, Kush Goliya, Kuan-Yu
Chen, David Blaauw, Reetuparna Das, and Satish Narayanasamy. 2021.
SquiggleFilter: An Accelerator for Portable Virus Detection. In MICRO’21:
54th Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO ’21), October 18–22, 2021, Virtual Event, Greece. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3466752.3480117

1 INTRODUCTION
The COVID-19 pandemic caused by the SARS-CoV-2 virus contin-
ues on a global scale. Today, diagnostic tests are widely available
to detect SARS-CoV-2. Most of these tests involve some form of
Polymerase Chain Reaction (PCR), a common technique for expo-
nentially amplifying DNA/RNA. In order to detect a virus such as
∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 License.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8557-2/21/10.
https://doi.org/10.1145/3466752.3480117

SARS-CoV-2, custom “primers” are first designed and manufactured
which will only attach to and amplify specific regions of DNA/RNA
in the target virus’s genome. After PCR, the virus’s presence or
absence can be determined based on whether the amplification was
successful or not.

A significant shortcoming of the current approach is that PCR
primers are targeted to a specific virus. Custom primer design is
a complex, error-prone, and time-consumingprocess [42] [41].
Even though SARS-CoV-2’s RNA was sequenced in early Janu-
ary 2020, validated SARS-CoV-2 specific PCR primers took several
months to develop [41] [44]. Lack of mass testing capability in the
early stages of SARS-CoV-2 made it difficult to detect and control
its spread, leading to a catastrophic pandemic. While we now have
adequate testing capability for SARS-CoV-2, it is not unlikely for
another novel virus like SARS-CoV-2 or its variants to emerge in
the near future [26], and if it does, we need to be prepared with
adequate testing infrastructure in place to detect and control its
spread in the early stages.

We envision a programmable virus detector (one that constructs
whole viral genomes) that can be deployed worldwide. As soon as
an emerging novel virus is discovered and sequenced, the reference
genome of the novel virus would be distributed to all the devices,
instantly turning them into targeted detectors.

Our solution uses Oxford Nanopore Technologies’ (ONT) Min-
IONMk1B (henceforth, referred to as theMinION), a new-to-market
palm-sized DNA/RNA sequencer. It is fairly low-cost, portable, and
can sequence long reads in real time.

Figure 1: MinION sequencer in our laboratory.

We replace targeted PCR with universal PCR [62], which am-
plifies all DNA/RNA. Thus, it avoids the problem of custom PCR
primer design and deployment mentioned earlier. However, this
introduces a different problem, as up to 99.99% of the DNA/RNA

535

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Dunn and Sadasivan, et al.

in a typical biological specimen (e.g. saliva) is non-viral [11] (non-
target) and most belongs to the host. Amplifying all DNA/RNA
preserves this ratio, resulting in the vast majority of sequencing
and computing time and cost stemming from processing non-target
DNA/RNA.

In order to solve this needle-in-a-haystack problem, ONT se-
quencers have a feature calledRead Until [6]. As reads (DNA/RNA
fragments) are sequenced, they need to be analyzed in real-time.
As soon as the computer classifies that the read is non-viral, the
sequencer is instructed to eject it, which saves the time and cost
of sequencing non-viral reads (>99% of all reads). Unfiltered viral
reads are used to construct the whole virus genome using reference-
guided assembly (alignment and variant calling).

The MinION, however, does not have any on-board comput-
ing power to perform such secondary analysis. In this paper, we
analyze the performance of the Read Until bioinformatics
pipeline for efficiently sequencing viral pathogens, and realize a
portable computing solution that can be integrated with MinION.

We discover new performance bottlenecks that are not addressed
by past genomics accelerators [5, 8, 9, 13, 18, 28, 54, 61]. In particular,
we find that the Deep Neural Network (DNN) basecaller (software
that translates MinION’s electrical squiggles to AGTC bases) dom-
inates the computing time (96%). The aligner and variant caller,
which have been the targets of recent accelerator research, con-
stitute a much smaller fraction of compute. We also find that a
current edge GPU is inadequate to keep up with the throughput of
the MinION. Also, its high latency in classifying a read prevents us
from taking advantage of the latency-critical Read Until feature of
MinION.

Converting squiggles to bases using a compute-intensive base-
caller, and then aligning to check if a read belongs to the target
virus is needlessly expensive for classifying it. Instead, we skip
the basecaller altogether by directly comparing each read’s
squiggles to the precomputed expected signal profile of the
target virus’s entire reference genome (the “reference squig-
gle”). By skipping the compute-intensive basecaller step, we im-
prove efficiency significantly.

Wepresent SquiggleFilter, a hardware/software co-designed
filter which identifies non-target reads by directly comparing the
real-time measured squiggles to the target virus’s precomputed
reference squiggle. A classification decision is made based on the
degree of match.We develop a custom subsequence dynamic
time warping (sDTW) algorithm [2] to perform this classifica-
tion. It includes solutions that improve accuracy by adaptively
examining longer read prefix lengths when needed. It also includes
customizations that result in area efficient hardware.

sDTW-based SquiggleFilter is significantly more efficient than a
DNN-based basecaller, and its regular compute-bound characteristic
makes it amenable for hardware acceleration. sDTW is a dynamic
programming algorithm [48] whose complexity is proportional to
the product of the length of the reference (R) and query (Q). Its
regular memory access pattern allows us to build a fast and space
efficient 1D systolic array accelerator for sDTW with a constant
number of processing elements. Fortunately, we find that almost all
epidemic viruses have genome references of length 50,000 (R) bases
or smaller (see Figure 10) [25]. As a result, our accelerator can easily
complete the classification in ∼2R cycles (forward and backward of

Figure 2: Progression of US COVID-19 testing [15]

reference strand), and still meet the strict latency requirement for
leveraging Read Until.

Our work makes the following contributions:
• we demonstrate that basecalling is the computational bottle-
neck in the virus sequencing pipeline. Read alignment and
variant calling – targets for prior accelerator work – are not
the bottleneck.

• we identify direct squiggle alignment (first proposed in [24])
as a more efficient alternative to basecalling and alignment
when enriching low-concentration viral specimens with
Read Until.

• we propose multi-stage sDTW and several modifications to
vanilla sDTW to realize an accurate and efficient hardware
accelerator.

• we co-design a sDTW hardware accelerator to filter non-
viral reads, for variable read prefix and almost all infectious
viral genome lengths

• we demonstrate that this hardware, unlike current approaches,
will enable ReadUntil to scalewith rapidly increasing nanopore
sequencing throughput

• we quantify accuracy and efficiency of our classifier using
real-world metagenomic datasets, including datasets col-
lected from our wet-lab experiments for Read Until.

Results: We design an edge device with compute capabilities
similar to a Jetson Xavier System-on-Chip [31] consisting of Squig-
gleFilter, an edge GPU, and an 8-core ARM processor. We show
that our proposed SquiggleFilter can accurately distinguish target
viral DNA/RNA from background human DNA/RNA. We evaluate
accuracy using non-contagious lambda phage virus data sequenced
in our own lab. In terms of efficiency, we show that our Squiggle-
Filter accelerator has 274× higher throughput than the conventional
software pipeline (using a basecaller) on an edge GPU while only
consuming an area of 13.25mm2 and power of 14.31W. Squiggle-
Filter’s throughput is 233.65M samples/s, which far exceeds the
maximum throughput of 2.05M samples/s on a MinION [57], and is
adequate to handle up to a 114× increase in MinION’s throughput
in the future. The latency for classifying any read is 0.043ms, which
is insignificant to Read Until decision’s critical path.

2 BACKGROUND
2.1 Need for a Virus Detector
While SARS-CoV-2 was discovered – and its RNA genome se-
quenced – by early January 2020, it was not until several months
later that mass testing was available worldwide. Figure 2 shows
the steady increase in daily COVID-19 tests performed within the

536

SquiggleFilter: An Accelerator for Portable Virus Detection MICRO ’21, October 18–22, 2021, Virtual Event, Greece

United States [15]. A widely established global testing infrastruc-
ture would have helped control the spread of the virus early on,
possibly saving hundreds of thousands of lives.

Given the increasing frequency of viral outbreaks, experts are
concerned that it is only a matter of time before a new virus threat-
ens the globe [26]. Thus, we need a virus testing technology that
can be widely deployed ahead-of-time, and reprogrammed to detect
and identify mutations in novel viruses as soon as they emerge.

In this work, we focus on controlling the spread of novel in-
fectious viruses in their early stages, as soon as they are discov-
ered and sequenced.Our goal is to enable a universal rapid test
that can determine the whole genome of a target virus using
reference-guided assembly. Targeting a specific virus enables us
to make significant optimizations that help us reduce time and cost
of sequencing and compute.

2.2 State-of-the-art Virus Detectors

Tests
Diagnostic
Power

Programmable Time
(min)

Cost
($)

Antigen-based test
Paper [1] presence 15 5

Non-sequencing molecular test
RT-LAMP [10][30] presence 60 15

RT-PCR [21] presence 120-240 <10

Sequencing based molecular test (30× coverage)
ARTIC [35][21] 98 targets 305 100
LamPORE [16] 3 targets <65 -NA-
RNA: 1% virus whole genome ✓ 240 110

0.1% virus [37] whole genome ✓ 1206 190
DNA: 1% virus whole genome ✓ 320 105

0.1% virus [36] whole genome ✓ 470 120

Table 1: A comparison of popular commercial and ONT
sequencing-based virus detectors for SARS-CoV-2.

Table 1 lists commonly used tests and ONT-based sequencing
solutions for SARS-CoV-2. None of the methods except direct RNA
or DNA sequencing are programmable, and therefore, are not effec-
tive in controlling the pandemic in its early stages. Antigen (paper)
tests detect specific surface proteins on the virus. They are cheap,
portable, and fast. However, they have low sensitivity and can only
detect viruses present at high concentrations.

Molecular tests identify specific regions of interest in a virus’s
genome and amplify this DNA if present in the specimen. Poly-
merase Chain Reaction (PCR) is a common technique used for
amplification. It has high sensitivity [29] but requires thermal cy-
cling, which can be slow and expensive. LAMP (Loop Mediated
Isothermal Amplification) is a more recent technology that obviates
the need for a thermal cycler, but its primers are more complicated
to design than PCR.

If amplification was successful (i.e., target DNA is present), it can
be detected using fluorometry or colorimetry. Most clinical tests
for SARS-CoV-2 stop here. However, by sequencing the amplified
specimen, we can assemble portions of virus’s genome, depending
on the number of targets amplified. ARTIC and LamPORE [16]

amplify 98 and 3 genes respectively, and then use ONT’s nanopore
sequencing.

Current solutions for virus detection use multiplex primer sets
specific to a virus. Primer design is a complex, error-prone and time-
consuming process [42] [41]. Thus, they are not an effective solution
for early pandemic control. The COVID-19 pandemic highlights this
problem, where designing and distributing target-specific primers
was challenging, especially when supply chains broke amidst the
pandemic.

An alternative to developing custom primers is to directly se-
quence the specimen following amplificationwith universal primers,
which non-selectively amplify all DNA. This amplification step is
required to increase the quantity of DNA, which greatly reduces
average capture time (the time required for a DNA strand to enter
a nanopore) and therefore sequencing time. The wet-lab proto-
col followed, Sequence Independent Single Primer Amplification
(SISPA) [27, 32], is universal and hence can be used on all RNA
viruses. SISPA has four major steps: (1) RNA extraction, (2) com-
plementary DNA generation, (3) PCR amplification, and (4) final
sequencing specimen preparation.

A significant hurdle to SISPA-based sequencing is that follow-
ing amplification, the specimen contains the genetic material of
the target virus among a sea of human and bacterial DNA/RNA.
The proportion of target virus DNA/RNA can be as low as 0.01%
percent [11]. As a result, the time and cost of sequencing and data
processing for this approach is significantly greater than that of
custom primer-based solutions.

If this cost barrier can be overcome, this approach would enable
detection of novel viruses without requiring months to develop and
distribute virus-specific primers. Read Until can greatly increase
the efficiency of sequencing by filtering out non-target reads using
the virus’s reference genome. Current Read Until approaches are
limited by insufficient throughput, but our hardware accelerated
SquiggleFilter ensures the future scalability of Read Until on higher
throughput sequencers.

2.3 Portable MinION Sequencer
Oxford Nanopore Technology’s (ONT) MinION offers multiple ben-
efits that makes it a uniquely attractive solution for mobile and
rapid virus detection.

Long reads: MinION sequencers are capable of measuring long
strands of DNA, and can theoretically sequence any strand, regard-
less of length. The current world record stands at over 4 million
bases [19].

Cost: The MinION only costs $1,000, and offers affordable speci-
men preparation kits ($100/use) and flow cells ($125/use assuming
4× re-use). In comparison, it costs $80,000-$100,000 to purchase
even the most affordable “Next Generation Sequencing” machines.

Real-time: MinION sequencers provide real-time, streaming
output from the device. Streaming signal output enables on-the-fly
secondary analyses, and the ability to stop sequencing as soon as
the desired coverage is reached.

Portability:A key feature that sets the MinION sequencer apart
from all other sequencers in terms of wet-lab, sequencing and com-
pute as shown in Figure 3. The portable compute, however, remains
inefficient for real-time sequencing.

537

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Dunn and Sadasivan, et al.

Figure 3: Sequencing and wet-lab is portable. Compute,
though portable, is insufficient for Read Until.

Target enrichment: An especially exciting capability of the
MinION sequencer is “Read Until", which ejects non-target
DNA/RNA strands by reversing the electrical potential across the
pore. This effectively enables digital enrichment of target DNA/RNA
in low-concentration specimens.

However, a slow read classification results in wasted sequencing
time. Currently, the MinION has no inbuilt computing power to
make Read Until decisions. We additionally find that commodity
GPUs are undesirable in terms of both throughput, latency and
power.

3 COMPUTE BOTTLENECKS IN PORTABLE
VIRUS DETECTION

Our goal is to build a cost and time efficient sequencing pipeline
for determining the whole genome of a targeted virus, but without
using custom primers for target amplification. We seek to reduce
time and cost using the Read Until feature of Oxford Nanopore
(ONT)’s palm-sized MinION sequencer.

To this end, we constructed a software pipeline using state-of-the-
art bioinformatics tools and analyzed its performance. Our profiling
results expose new performance bottlenecks that are different from
those targeted in past accelerators for human genome sequencing [5,
8, 9, 13, 18, 28, 54, 61].

3.1 Bioinformatics Pipeline
The MinION sequencer measures electrical current signals that
represent the bases (A, G, T, C) moving through each pore, recording
approximately 10 samples for each base. All the active pores (up to
512 in the MinION) concurrently produce squiggles for the reads
flowing through them. These squiggles can be analyzed in real-time
as the reads flow through the pores.

Figure 4 illustrates the analysis pipeline for the squiggles. A base-
caller translates squiggles into bases. The latest basecallers (such
as ONT’s Guppy [58]) use compute-intensive DNNs, which must
be large and deep to attain state-of-the-art accuracy. Guppy pro-
cesses reads in chunks of 2000 samples, and uses five bidirectional
LSTM layers for encoding followed by a custom CTC (Connection-
ist Temporal Classification) decoder. ONT provides two versions of
its basecaller: a high-accuracy version (Guppy), and another that
trades off accuracy for performance (Guppy-lite).

In our Read Until pipeline, squiggles of a read are basecalled in
real-time. After a short prefix of a read has been basecalled, it is
then processed by an aligner (MiniMap2 [22]) that aligns the read
to the target’s reference genome. If a good alignment is found, then

the read is classified as a target and passed on to the next stage. Oth-
erwise, a signal is sent to the MinION device, instructing it to eject
the non-target read from further sequencing. Thus, the critical
computing path for Read Until includes both the basecaller
and aligner.

The target reads are collected and analyzed by a variant caller
(Racon [56] followed by Medaka [60]). We seek to cover every po-
sition in the reference genome by 30 reads (30× coverage). The
variant caller analyzes the reads piled up at each reference genome
location, and identifies any genomic differences (“variants”) be-
tween the sequenced and reference viruses. As the variant caller
is not involved in Read Until decisions, it is off the critical
path.

3.2 Performance Bottlenecks
Figure 5 shows the performance bottlenecks of the bioinformatics
pipeline (Section 3) used to assemble the whole SARS-CoV2 genome,
evaluated on the CPU and GPU in Table 3. The results are shown
for two representative biological specimens, one where the target
viral reads constitute 1% of all the reads, and the other 0.1%.

We observe that a large fraction of computing time (96%)
goes towards basecalling. This is in spite of using the more effi-
cient, but less accurate, Guppy-lite.

Compute spent towards aligning (MiniMap2) and variant call-
ing (Racon and Medaka) constitutes significantly smaller frac-
tion, especially for specimens with low viral load (0.1%). In con-
trast, prior work on genomics accelerators targeted aligners and
variant callers used for reference-guided assembly of human
DNA [5, 8, 9, 13, 18, 28, 54, 61]. There are several reasons for this
significant difference, discussed next.

All the reads are aligned to a target viral genome to classify them
as target or non-target. This alignment step, however, is signifi-
cantly less compute intensive compared to aligning to a human
genome, because viral genomes are much shorter (≈30,000 bases)
than human DNA (3 billion bases).

Only a small fraction of target reads (1% to 0.1%) need to be pro-
cessed for reference-guided assembly of a viral genome. Therefore,
the variant caller is invoked only for a small fraction of sequenced
reads. Also, given that viral genomes are shorter, we find that the
variant caller does not consume much compute resources. Further-
more, the variant caller is not on the critical path for using Read
Until, as it is not required for classifying reads.

We find that even a 250W Titan GPU has barely enough base-
calling throughput (with low accuracy Guppy-lite) to keep up with
a MinION’s maximum sequencing throughput. An edge GPU (e.g.,
Jetson Xavier’s) is several times slower than that, and therefore it
cannot process all the sequenced reads in real-time to exploit the
latency sensitive Read Until feature.

Sequencing throughput, however, continues to grow, as shown in
Figure 6. Oxford Nanopore Technologies (ONT)’s GridION is only
slightly larger, but has 5× the sequencing throughput of a MinION.
ONT announced in 2019 that they are working with MinION proto-
types that provide 16× sequencing throughput of MinION devices
available in the market today. Within the next few years, they plan
to release a production flowcell with 100× greater throughput [3].

538

SquiggleFilter: An Accelerator for Portable Virus Detection MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Figure 4: A Read Until pipeline for targeted reference-guided assembly of a virus genome.

Figure 5: Basecalling is the bottleneck in a Read Until assem-
bly of a SARS-CoV2 genome from specimens with a) 1%, and
b) 0.1% viral reads.

Figure 6: Sequencing throughput is increasing exponen-
tially [47].

Currently, the MinION does not have any on-board compute
capability. Our goal is to map all the secondary compute analysis
onto an edge system-on-chip so that it can be integrated with the
MinION. We address this growing computing need with our small,
low-power accelerated SquiggleFilter, which greatly reduces the
basecalling and alignment computation required for non-target
reads.

4 SQUIGGLEFILTER: A SQUIGGLE-LEVEL
TARGETED FILTER USING DYNAMIC TIME
WARPING

As discussed in Section 3, classifying a read being sequenced by an-
alyzing its short prefix as target or not, in real-time, is the compute
bottleneck. Additionally, basecalling for this classification consumes
the most compute time.

Instead of using a basecaller (DNNs) and MiniMap2 aligner to
classify a read’s prefix, we discuss SquiggleFilter’s algorithm that di-
rectly aligns each read’s electrical signals (query) to the target viral
genome’s precomputed electrical signal (reference). As a majority
of the reads are non-targets, we reduce latency and save much of
the work done in basecalling and aligning these non-target reads.

SquiggleFilter aligns the query squiggle with a precomputed ref-
erence squiggle of the viral genome using a variant of the dynamic
time warping (DTW) algorithm [14]. Recent work has eschewed
sDTW due to it’s Θ(NM) complexity [7, 20, 43, 45], but we demon-
strate that since both queries (read prefixes) and virus genomes
are short, it is a practical solution for viral read enrichment. We
further demonstrate its effectiveness on real sequencing data for a
SARS-CoV-2 specimen.

Finally, we propose multi-stage sDTW filtering to improve effi-
ciency, and discuss several improvements to conventional sDTW
that help realize an efficient hardware accelerator.

4.1 Constructing the Reference Squiggle
In order to align raw signals to a reference genome, the known
sequence of bases must first be converted to an expected current
profile [23, 24, 50]. As a strand of DNA passes through a nanopore,
the current measured is affected by 5-6 adjacent bases simulta-
neously. A lookup table is provided by ONT which contains the
expected current (in pA) for every possible combination of six bases
(“6-mer”) [52]. This conversion is demonstrated in Figure 7, af-
ter which the expected signal is normalized using the mean and
standard deviation.

Figure 7: Aligning reference bases to expected currents.

4.2 Normalizing Query Squiggles
Figure 8a shows a contrived minimal example of multiple raw
nanopore signals corresponding to the same sequence of bases. Due
to a variable rate of DNA/RNA translocation through the nanopore,
these signals are out-of-sync (transitions between current levels
do not occur simultaneously). Using Dynamic Time Warping (dis-
cussed next) solves this issue, and signals are aligned to the expected
signal profile (shown in red in Figure 8b). Slight differences in ap-
plied bias voltages at each nanopore cause the measured currents
to differ significantly, which is why normalization within each read
is additionally helpful (Figure 8c).

539

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Dunn and Sadasivan, et al.

Figure 8: a) Three raw current measurements (“squiggles”)
for the same sequence of bases. We then show squiggles
aligned to the expected signal b) without, and c) with nor-
malization.

4.3 Subsequence Dynamic Time Warping
Dynamic Time Warping (DTW) is a dynamic programming algo-
rithm which is commonly used to align out-of-sync signals [2, 17].
Our filter applies subsequence DTW (sDTW), a slight modification
of standard DTW which allows the entire query signal to align to
any small portion of the reference, rather than forcing end-to-end
alignment of both sequences.

The original sDTW algorithm works as follows for subsequence
queryQ of length N , reference sequence R of lengthM , and scoring
matrix S :

def sDTW(Q,R):

S = zeros(N,M)

S[0,0] = (Q[0]-R[0])2

for i in range(1,N):

S[i,0] = S[i-1,0] + (Q[i]-R[0])2

for i in range(1,N):

for j in range(1,M):

S[i,j] = (Q[i]-R[j])2 + min(

S[i-1,j-1], S[i,j-1], S[i-1,j])

return min(S[N,:])

Figure 9: Dynamic time warping algorithm.

The above algorithm dynamically computes all possible align-
ments of the query Q to reference R (keeping only the best ones)
while allowing arbitrary many-to-one or one-to-many mappings
between the two signal profiles. It is illustrated in Figure 9. Matrix
S records a running tally of the net squared differences between
the two signals (using the best alignment of Q[0 : i]). At the end,
S[N , j] (highlighted top row in Figure 9) contains the alignment
cost of Q to a subsequence of the reference R[x : j], where x is the
start of the best alignment ending at j. The minimum value in this
row corresponds to the least squared difference in signal between
alignments of the signal to the reference, and thus the cost of the
optimal alignment.

4.4 sDTW for Virus Detection
The majority of viruses which are responsible for human epidemics
have relatively small single-stranded RNA genomes [25], as is
demonstrated in Figure 10. The two notable exceptions are smallpox

Figure 10: Epidemic virus genome lengths.

and herpes simplex, which have larger and more chemically stable
double-stranded DNA genomes. Because most viruses have small
genomes, we design our filter to operate on viruses with single-
stranded genomes of length less than 100,000 bases. Equivalently,
the filter works on viruses with double-stranded genomes less than
50,000 bases long. At such short reference genome lengths, it is
computationally feasible to compare reads to the entire reference
genome for filtering. This would not be a feasible solution for com-
plex organisms such as humans, with genomes approximately 3
billion base pairs long.

4.5 sDTW is an Effective Filter
We seek to design a solution that is capable of detecting all strains
of a particular viral species. It is therefore important that our filter
is tolerant to variants in the sequenced genome relative to the ref-
erence genome used by our filter. We found that reference-guided
filtering can be accurate regardless of viral strain, since the num-
ber of mutations between different strains is low. Table 2 presents
the number of single base mutations between an assembled virus
genome for several known SARS-CoV-2 strains, relative to the orig-
inal Wuhan reference assembly [63]. No insertions or deletions
were observed. Strains were defined using NextStrain’s [12] classifi-
cation of all sequenced SARS-CoV-2 genomes into groups of shared
ancestors, or “clades”, and data was sourced from the GISAID data-
base [49].

Clade Mut. GISAID ID Lab of Origin Country

19A 23 593737 SE Area Lab Services Australia
19B 18 614393 Bouake CHU Lab Ivory Coast
20A 22 644615 Dept. Clinical Microbiology Belgium
20B 17 602902 NHLS-IALCH South Africa
20C 17 582807 Public Health Agency Sweden

Table 2: There are few mutations between SARS-CoV-2
strains, relative to the Wuhan reference genome.

Since there are only a handful of mutations between various
SARS-CoV-2 strains, the final sDTW alignment cost will not be
significantly impacted. This cost is used to determine whether a
given read aligns to the viral reference genome by comparing it to a

540

SquiggleFilter: An Accelerator for Portable Virus Detection MICRO ’21, October 18–22, 2021, Virtual Event, Greece

constant threshold. If the alignment cost exceeds the chosen thresh-
old, then the squiggle did not match well with any subsequence of
the reference genome’s expected current profile, and the read can
be discarded. Figure 11 shows that a static threshold can be used to
distinguish between viral and human DNA fragments (discarding
reads above the threshold and keeping reads below the threshold)
even when only a few thousand signals have been captured. Due
to the slight overlap in final alignment costs, some reads will be
incorrectly classified when using a static threshold.

Figure 11: sDTW cost distributions for reads of 3 prefix
lengths, aligned to the lambda phage genome.

4.6 Multi-stage sDTW Filtering
We observed that as a read’s sequenced prefix length increases,
the sDTW alignment cost is more accurately able to distinguish
between target and non-target DNA (there is a decrease in overlap
between cost distributions in Figure 11). However, waiting to make
a Read Until decision increases the proportion of non-target DNA
sequenced.

Therefore, instead of a single-stage filter that chooses a constant
read length and threshold, we can filter in multiple stages. The
first stage examines a shorter read length (e.g. 1000 samples), but
chooses a less aggressive threshold that may let many non-target
reads through. Non-target reads filtered and ejected using Read
Until at this stage would be very short. If a read is retained, it is
sequenced further. The second stage then examines the longer read
prefix (e.g. 5000 samples), and filters using a more aggressive thresh-
old. Intermediate results can be stored to avoid recomputation. In
this way, several stages enable the classifier to filter a majority of
non-target reads after seeing only a short prefix. Only reads with
initial low-confidence are sequenced more before a decision is made.
We have designed our hardware accelerator with this (optional)
capability.

4.7 sDTW Algorithm Improvements
We propose several modifications to sDTW which help improve
either our accelerator’s efficiency or accuracy of non-target read
filtering.

Absolute Difference:We reduce hardware area and avoid mul-
tiplication by using abs(Q[i]-R[i]) as our distance metric instead
of (Q[i]-R[j])2.

Integer Normalization: Our solution uses 8-bit fixed point
arithmetic during normalization, with no significant impact to clas-
sification accuracy (see Figure 18).

No Reference Deletions: Since the MinION averages 10 sam-
ples per base pair, it is unnecessary during sDTW computa-
tion for a single squiggle value to be able to align to multiple

bases. We removed the possibility of reference deletions entirely
from our dynamic programming computation, so that S[i,j] =
abs(Q[i]-R[j]) + min(S[i-1,j-1], S[i-1,j]).

Match Bonus: This final modification improves filtering accu-
racy. We found that reads with higher average translocation rates
generally have higher alignment costs. To ensure sDTW alignment
costs solely represent quality of alignment and are independent
of translocation rate, we implemented a “match bonus” that re-
wards reads for matching additional reference bases, reducing the
alignment cost for each matching base by a constant (10) scaled
by the number of signals aligned to the previous reference base
(thresholded to 10).

4.8 Need for an Accelerator
Despite the reduction in computation when compared to base-
calling, sDTW alignment is still too slow to run on commodity
hardware. sDTW alignment does avoid expensive floating point
operations, instead requiring 8-bit integer comparisons and ad-
ditions/subtractions. sDTW also has a smaller memory footprint
(60,000 reference bases) compared to Guppy-lite (284,000 weights)
when filtering SARS-CoV-2. Despite memory and operation com-
plexity advantages, however, the number of operations required
for sDTW (1,400 million) is greater than that of Guppy-lite (141
million). This is still more efficient than Guppy (2,412 million). In
order to meet current and future MinION device requirements for
Read Until, it is necessary to design an accelerator.

5 ACCELERATED SQUIGGLEFILTER
We present a System-on-Chip for reference-guided assembly of
target viruses, shown in Figure 12. Its capabilities are similar to a
Nvidia Jetson TX2, except for our SquiggleFilter accelerator. Our
SquiggleFilter accelerator classifies and filters non-target reads,
which constitute >99% of all reads in most biological specimens.
Thus, a large fraction of computing identified in Section 3 is han-
dled by our SquiggleFilter accelerator. Furthermore, our accelerator
enables low latency read classification, allowing us to use Read
Until to eject non-target reads after sequencing only a short prefix.

Target reads (and any false positives) are processed off of Read
Until’s critical path. Only these small fraction of reads need to
be basecalled, aligned, and variant called. We find that we can
perform these computations on an edge GPU (basecaller) and ARM
processor (aligner and variant caller), and still construct the whole
viral genome in approximately 10 minutes. Unfiltered non-target
reads (false positives due to sDTW algorithm) will fail to align to
the viral reference genome after basecalling, and so they will be
discarded without affecting the accuracy of conventional reference-
guided assembly. The final assembled genome and raw sequencing
data is written to a 32GB eMMC5.1 flashmemory, which is sufficient
to store one day’s worth of sequencing data.

We now present the 1D systolic array based SquiggleFilter accel-
erator for our squiggle-level classification algorithm discussed in
Section 4. It can be programmed to target any novel viral genomes
less than 100K bases. It supports variable query length. That is, it
can classify read prefixes of different lengths, and thereby supports
multi-stage filtering. The size of the systolic arrays and buffers are
derived from our analysis of real-world metagenomic data.

541

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Dunn and Sadasivan, et al.

Figure 12: System-on-Chip design with the accelerated hard-
ware filter on ASIC integrated with NVIDIA GPU and 8-core
ARM v8.2 64-bit CPU

5.1 SquiggleFilter Design
SquiggleFilter consists of 5 independent tiles (one tile is shown in
Figure 13). Each can be individually power-gated based on desired
filtering throughput. This number was chosen to meet the expected
100× future increase in sequencing throughput. Each read is as-
signed to an available tile for classification. As a read is sequenced,
squiggles from a MinION R9.4.1 flow cell are streamed into DRAM
in real-time. From there, squiggles are fetched into a tile’s query
buffers. Two ping-pong query buffers enable simultaneous squiggle
loading and normalization. Once the desired length of read prefix
has been sequenced, the raw squiggles of a query are normalized
and then stored across the processing elements connected in a 1D
systolic array.

Each tile also stores a copy of the precomputed reference signal
(loaded from flash during an initialization phase) in a reference
buffer. The reference samples are then streamed into the systolic
array. The entire sDTW matrix is computed in a wavefront parallel
manner as described in Section 4.7. The final PE determines the
final minimum alignment cost, and sends a control signal to the
MinION to eject the read if the final cost exceeds a predetermined
threshold. Non-ejected reads are sequenced in full and stored in
memory.

The number of cycles required to classify a new read is the
read prefix length (2000 samples) plus the reference genome length
(60,000 samples for SARS-CoV-2).

ReferenceBuffer:We chose to use a separate buffer (100 KB) for
each tile, even though all the reference buffers across the tiles store
the same information (viral genome’s reference squiggles). This
allows us to reduce access latency and provide sustained throughput
to each tile with just one read port. The area cost of duplicating the
references is negligible, as reference buffers constitute only 6.98%
of total tile area.

Furthermore, our design is independent of reference length and
limited only by the reference buffer size provisioned. By loading a
new precomputed reference signal onto the on-board flash, Squig-
gleFilter can easily be reprogrammed to detect a novel virus.

Variable Query Length: As discussed in Section 4.6, there ex-
ists a trade off between classification accuracy and sequencing
length of queries. We find (Section 7.4) that read prefix length of
2000 samples yields the most savings using Read Until, when we
use a single threshold. Therefore, we use a 1D systolic array of size
2000 PEs.

Our SquiggleFilter design can handle variable read prefix lengths
that are multiples of 2000 squiggle samples. To support query

lengths longer than 2000 samples and multi-stage filtering, we
configure the last PE such that it can optionally write the sDTW
costs every cycle to DRAM. This consumes significant memory
bandwidth. However, it enables sDTW computation to continue
if greater classification accuracy by analyzing a longer prefix is
desired. These intermediate costs are then loaded from DRAM and
used to initialize the PEs (similar to initial normalized query) prior
to computing the costs for a 4000-sample prefix length.

5.2 Processing Element
Each PE computes a cell in the sDTW matrix every cycle, using
the final algorithm described in Section 4.7. At cycle c , each PE
(Figure 14) checks for the minimum among its previous neighbor’s
c − 1 and c − 2 cycle’s outputs, modified by a bonus which rewards
matching new reference bases. This minimum is then added to the
absolute difference of the current query and reference values. Each
PE stores the resulting costs and bonuses from its last two cycles
for the next PE. Additionally, the last PE contains logic to compare
its cost to a predefined threshold which determines whether or
not to eject the read. This threshold can be reprogrammed on the
SquiggleFilter based on software analysis of the target strain, but we
have found it to be relatively robust across species and sequencing
runs. Each PE is 1203µm2 and requires 1.92mW when synthesized
for a 28nm TSMC chip.

5.3 Normalizer
Normalization rescales the raw signals in order to improve clas-
sification accuracy when performing sDTW [46], as discussed in
Section 4.2. The normalizer, shown in Figure 15, is a query pre-
processor which streams in 10-bit samples from the query buffer
for accumulation. After every n = 2000 samples, the normalizer
updates the mean and Mean Absolute Deviation (MAD), defined as
follows:

mean = x̄ =
n∑
i=1

xi
n

MAD =
n∑
i=1

|xi − x̄ |

n

Thereafter, the streamed-in samples are transformed with mean-
MAD normalization. The output normalized value is filtered for
outliers and then re-scaled to a reduced precision 8-bit integer
which is then fed to the tiles for sDTW classification. We find that
8 bits of precision is sufficient for accurate classification (Figure 18).
For efficiency, we do not convert the ADC sample to floating point,
but instead use fixed-point values in the range [−4, 4].

6 METHODOLOGY
Human DNA datasets containing MinION R9.4 and R9.4.1 flow
cells were obtained from the Nanopore Whole-Genome Sequencing
Consortium [59] and the ONTOpen Datasets [53]. The SARS-CoV-2
dataset contains raw MinION R9.4.1 data available from the Cadde
Centre [4].We sequenced lambda phage DNA in our own laboratory
using the ONT Rapid Library Preparation Kit [39] following the
Lambda Control protocol with a MinION R9.4.1 flow cell.

We performed basecaller profiling measurements using a
Titan XP GPU (server class) and Jetson Xavier GPU (edge

542

SquiggleFilter: An Accelerator for Portable Virus Detection MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Figure 13: SquiggleFilter Tile. N=2000 PEs are connected with streaming inputs and outputs. The last PE determines the clas-
sification by comparing its cost to a threshold every cycle. c is the cycle and i is the PE index.

Figure 14: SquiggleFilter Processing Element.

Figure 15: SquiggleFilter Normalizer.

class). Their specifications are provided in Table 3. We eval-
uated both Guppy (dna_r9.4.1_450bps_hac.cfg) and Guppy-
lite (dna_r9.4.1_450bps_fast.cfg) without modification using
Guppy version 4.2.2 [58]. MiniMap2 version 2.17-r954-dirty [22]
aligned basecalled reads.

First, we measured the basecalling throughput of Guppy and
Guppy-lite on a dataset of 33,004 full-length reads. Next, we used
the proprietary Python libraries ont-fast5-api version 3.1.6 [33]
and ont-pyguppy-client-lib 4.2.2 [34] to basecall the same reads
in chunks of 2000 signals, thereby simulating Read Until on the
same dataset. The Python code was instrumented to record latency
information, and we tuned the number of reads simultaneously in-
flight to optimize performance. This online Read Until processing
(due to smaller batch size) resulted in 4.05× lower throughput for
Guppy-lite and 2.85× lower throughput for Guppy on the Titan
XP. Using these measurements and the relative peak throughputs
of the Jetson and Titan, the Read Until performance of the Jet-
son Xavier was estimated (necessitated by the unavailability of

ont-pyguppy-client ARM binaries for fine-grained Read Until
control on the Jetson).

Edge GPU Edge CPU GPU CPU

Model Jetson AGX ARMv8.2 Titan XP 2× Intel Xeon
Xavier E5-2697v3

Cores 512 Volta 8 3840 Pascal 56
Clock 1377MHz 2265MHz 1582MHz 2600MHz

Table 3: Architectural specifications of evaluated GPUs.

A memory-efficient multi-threaded implementation of sDTW
was written in Python for accuracy analysis, and tested on 1000
reads from each of the datasets mentioned above. In order to deter-
mine the relative benefits of Read Until using different classification
latencies and accuracies, we developed an analytical model to esti-
mate sequencing runtime. This model accounts for factors such as
average read length, desired coverage of the reference genome, av-
erage DNA capture time, and the Read Until parameters mentioned
previously.

The design was first functionally verified via emulation on Ama-
zon Web Service’s EC2 F1 instance, which uses a 16nm Xilinx Ultra-
Scale+ VU9P FPGA. Further, SquiggleFilter was synthesized using
the Synopsys Design compiler for 28nm TSMC HPC and the design
is clocked at 2.5GHz. 32GB 256-Bit LPDDR4x is connected to the
System-on-Chip along with an 8-core ARM v8.2 64-bit CPU.

7 RESULTS
7.1 SquiggleFilter Hardware Synthesis

ASIC Element Area (mm2) Power (W)

Normalizer 0.014 0.045
Processing Element 0.001 0.002
Tile (1×2000 PEs) 2.423 2.780
Query buffer 0.023 0.009

Reference buffer 0.185 0.028

Complete 1-Tile ASIC 2.65 2.86
Complete 5-Tile ASIC 13.25 14.31
Table 4: SquiggleFilter ASIC synthesis results.

Table 4 shows SquiggleFilter synthesized to a 13.25mm2 ASIC
that consumes 14.21W when performing single-stage filtering and

543

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Dunn and Sadasivan, et al.

clocks at 2.5GHz. It contains 5 fully-independent tiles (which could
be individually power-gated to improve energy efficiency). The
latency for classifying a 2000-sample read from SARS-CoV-2 is
0.027ms, and for lambda phage is 0.043ms, due to its longer refer-
ence genome. This adds insignificant latency to each Read Until
decision’s critical path, since it takes around 500ms to sequence a
sufficient number of bases to make an accurate decision. The single-
tile classification throughputs for SARS-CoV-2 and lambda phage
are 74.63M samples/s and 46.73M samples/s respectively, which are
both considerably higher than MinION’s current maximum output
of 2.05M samples/sec). Additionally, if each tile is configured to
perform multi-stage filtering, it will write intermediate results to
DRAM, consuming only 10 GB/s main memory bandwidth per tile.
Since Jetson Xavier’s main memory supports 137 GB/s, our 5 tile
design is feasible.

7.2 Performance Analysis
Latency: Figure 16a compares GPU-based basecalling latency to
our SquiggleFilter accelerator’s latency. Note that we show only
basecalling latency as it is the most time consuming step (96% of
compute time) of the virus classification pipeline. The measure-
ments demonstrate that it would be impractical to use the high-
accuracy Guppy basecaller as its latency is greater than one second,
in which time more than 400 bases would have been unnecessarily
sequenced for non-target reads. We found that Guppy-lite provides
sufficient accuracy for Read Until classification as downstream
aligner MiniMap2 is able to account for incorrect basecalls when
aligning reads. However, a 149ms basecalling latency for Guppy-lite
translates to an additional 60 bases sequenced for each read during
classification. Since most non-target reads can be discarded after
around 200 bases, this overhead is significant. In comparison, the
common-case 0.04ms decision latency of SquiggleFilter ensures
that not even a single base pair is unnecessarily sequenced.

Throughput: Figure 16b compares the basecalling through-
put of Guppy-lite measured over GPU configurations to Squig-
gleFilter accelerator’s classification throughput. An edge GPU such
as the Jetson does not have sufficient compute power to basecall
data from all pores in real-time and keep up with the maximum
sequencing throughput of the MinION. We calculated that the Jet-
son’s throughput would be approximately 95,700 bases per second,
which is only 41.5% of the MinION’s maximum output of 230,400
bases per second. In the worst case, Read Until can only be per-
formed using 41.5% of the MinION’s pores when basecalling using
Guppy-lite on the Jetson. The remaining 59.5% of pores are unable
to use Read Until, and will sequence full-length human reads. In
contrast, SquiggleFilter’s throughput far exceeds MinION’s and
GridION’s sequencing throughputs.

7.3 sDTW Algorithm Accuracy
Figure 17a compares sDTW accuracy to basecalling and alignment
on a dataset of 1000 lambda phage and 1000 human reads, with a line
plotted for each prefix length. The MiniMap2 alignment quality and
sDTW alignment cost thresholds (for determining which reads to
sequence and which to reverse) are swept through the range of pos-
sible values to show threshold-dependent accuracies. Although the
Read Until accuracy obtained by basecalling and aligning slightly

outperforms sDTW, this is to be expected since alignment algo-
rithms such as MiniMap2 use numerous scoring heuristics and have
matured significantly over the past two decades [22].

Figure 18 shows the maximal F-score for all of our algorithm
modifications and standard sDTW on the same dataset. As expected,
accuracy generally increases along with sample prefix length. We
found that using both integer normalization and absolute difference
for our distance metric reduce filtering accuracy slightly, a compro-
mise which was expected. Eliminating reference deletions results
in a slight accuracy improvement. Combining all three of these op-
timizations results in the lowest accuracy (but most efficient) of all
configurations tested. We find that by including our “match bonus”,
we can recover lost accuracy and outperform the baseline, with a
minor performance penalty. Figure 19 furthermore demonstrates
that there is no a significant loss in filter accuracy until there is
more than a 1,000 base difference between the reference genome
and viral strain sequenced.

7.4 Benefits of Read Until
Read Until not only saves sequencing time, but also cost. Figure 20
shows our wet-lab experiment. After sequencing for a while, wash-
ing the flow cell with nuclease and re-multiplexing (rapid alter-
nations of pore voltage bias direction, shown with dotted black
line) leads to control and Read Until pores having the same number
of active channels. This means that Read Until does not damage
the flow cell any more than normal sequencing, but enables more
experiments to be run over the lifetime of any flow cell.

The single-threshold Read Until design space was first explored
for our lambda phage dataset. Figure 17a shows the accuracy of
SquiggleFilter for a variety of Read Until prefix lengths (each line),
and for all reasonable sDTW alignment cost thresholds (points
on each line). Given this experimentally measured accuracy, the
total expected sequencing time to perform Read Until for lambda
phage was calculated using our analytical model, and is shown in
Figure 17b. We found that the best single-threshold configuration
for SquiggleFilter outperforms Guppy-lite on this dataset by 12.9%
in terms of Read Until runtime. By using multiple thresholds, we
can reduce runtime by a further 13.3%.

A similar analysis was then performed for the SARS-CoV-2
dataset, and the results are shown in Figure 17c. Optimal sDTW
alignment cost thresholds were taken from the Read Until run-
time minima from Figure 17b, and the corresponding Read Until
runtimes using those thresholds are marked for the SARS-CoV-2
dataset.

7.5 Looking Forwards: Scalability
Sequencing throughput is expected to increase by 10− 100× within
the next few years, due to new nanopore chemistry enabling a
denser configuration with many more channels per flow cell [3].
Figure 21 shows that without further improvements to basecalling
throughput, current GPUs will be unable to keep pace with new
sequencing technology. As a result, the time and cost savings gained
through Read Until will be largely lost. We can see that Guppy-lite’s
slight edge over SquiggleFilter in terms of accuracy has already
been lost due to its inability to perform Read Until on 512 pores. In

544

SquiggleFilter: An Accelerator for Portable Virus Detection MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Figure 16: a) Latency, and b) throughput of Guppy, Guppy-lite and SquiggleFilter during Read Until.

Figure 17: SquiggleFilter Read Until a) accuracy, and performance on b) lambda phage and c) SARS-CoV-2 datasets.

Figure 18: Accuracy results formodifications to the standard
sDTW algorithm.

Figure 19: SquiggleFilter accuracy is robust against random
(lambda phage) reference mutations.

contrast, our SquiggleFilter accelerator can tolerate a 114× increase
in sequencing throughput.

8 RELATEDWORK
TheMinIONwas released in 2014 as the first commercially available
nanopore-based DNA/RNA sequencing device [38]. The first Read
Until software pipeline was developed two years later, in 2016 [24].
In this seminal work, raw nanopore signal was first segmented
into events, and then events were aligned to a lambda phage ref-
erence using subsequence Dynamic Time Warping (described in

Figure 20: Time saved is cost saved for sequencing.

Figure 21: Future SquiggleFilter Read Until benefits.

Section 4.3). Event segmentation is used to detect the most likely
positions in the raw signal where a new base has entered the pore,
and could be considered a rudimentary form of basecalling. In fact,
it has been used as an essential preprocessing step in several older
basecallers [58]. Unfortunately, the throughput measured by this
original work on an 8-core ARM processor is 40× lower than the
current maximum MinION output.

As basecalling throughput and accuracy has gradually increased
over the last few years, the standard approach for Read Until
pipelines has been to basecall the signal and use an aligner to deter-
mine if each read aligns to the target genome [7, 40, 43, 45]. This
method achieves the highest accuracy, but is not scalable. When

545

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Dunn and Sadasivan, et al.

pairing a server-class GPU with a handheld MinION device, it is
just able to perform Read Until with the required throughput, albeit
with significant latency (as shown in Section 7.2).

UNCALLED, a more recent work, skips basecalling by doing
approximate alignments in 3 steps: event segmentation, FM-index
look-ups, and seed clustering [20]. However, we evaluated UN-
CALLED and observed that it requires longer prefix lengths for
accurate alignment. 23.63% of 2000-sample long chunks from our
lambda phage dataset were not alignable. After segmentation, UN-
CALLED uses an FM-index to filter reads. UNCALLED aligns only
∼76% of the lambda reads of 2000 samples on a modern Intel i7-7700
desktop processor taking 16ms per read. Moreover, ∼14% of reads
take 353ms per read to be aligned as more samples are required
for a decision. ∼10% of the reads, however, are left unaligned. On
an edge device with an ARM core and lower memory bandwidth,
performance would be worse. No existing software-only solution
has adequate throughput and low enough latency to effectively
perform Read Until on an edge device.

In contrast, our approach shifts to a minimalistic sDTW align-
ment algorithm, and by designing hardware to accelerate the simple
and regular sDTW computation, we can easily meet the desired
throughput and latency requirements on an edge device. General
purpose DTW accelerators have already been designed to solve
alignment problems in other domains such as audio signal pro-
cessing [51] and astronomy [46], but nanopore viral DNA/RNA
filtering required several application-specific optimizations to meet
the desired latency, throughput and accuracy requirements. Our
design involves several algorithmic modifications to vanilla sDTW
(described in Section 4.7), uses an on-chip buffer for efficient re-
peated alignments to the same reference, replaces all floating-point
computation with integer arithmetic for increased efficiency, uses
multi-stage filtering for optimal Read Until results, and has been
evaluated on a novel virus (SARS-CoV-2).

There has recently been significant work on designing hard-ware
accelerators for genomics applications [5, 8, 9, 13, 18, 28, 54, 61],
but these accelerators focus on human genome sequencing. As a
result, they efficiently align many (usually short) basecalled reads
to a long reference genome with high throughput and accuracy.
As noted previously in Section 3.2, our problem has very different
computational needs. We must selectively filter short noisy raw sig-
nals (squiggles) with sufficiently high throughput and low latency
to effectively exploit Read Until. We achieve this by replacing the
basecaller and aligner with SquiggleFilter.

9 CONCLUSION
In designing a universal virus detector, we identify the basecaller
to be a significant bottleneck in filtering non-target reads. This
compute problem is only going to get worse, as the throughput of
nanopore sequencers is expected to increase by 10-100× in the near
future. We address this problem using hardware-accelerated Squig-
gleFilter for filtering non-target reads without basecalling them.
We show that our 14.3W 13.25mm2 accelerator has 274× greater
throughput and 3481× lower latency than existing approaches while
consuming half the power, enabling Read Until for the next genera-
tion of nanopore sequencers.

ACKNOWLEDGMENTS
This project was supported in part by the Kahn Foundation and
NSF award 2030454.

We thank Robert Dickson and John Erb-Downward for intro-
ducing us to targeted nanopore sequencing for clinical diagnostics
and for borrowed use of their Jetson AGX Xavier. We also thank
Jenna Wiens, Piyush Ranjan, Arun Subramaniyan, and Yichen Gu
for their helpful input and feedback at various stages of this project.
Lastly, we would like to thank the ONT community as a whole.

546

SquiggleFilter: An Accelerator for Portable Virus Detection MICRO ’21, October 18–22, 2021, Virtual Event, Greece

A ARTIFACT APPENDIX
A.1 Abstract
Our artifact contains the RTL and testbench SystemVerilog code for
our SquiggleFilter accelerator in the design/ subdirectory. Addi-
tionally, sdtw_analysis.ipynb is a full Jupyter Notebook pipeline
containing our software sDTW algorithm implementation and our
Read Until runtime model, along with scripts for generating multi-
ple figures from our paper.

A.2 Artifact check-list (meta-information)
• Algorithm: Hardware and software implementation of cus-
tom subsequence Dynamic TimeWarping (sDTW) algorithm
for filtering non-viral DNA reads in real time.

• Program: RTL and SystemVerilog testbench code for Squig-
gleFilter accelerator. Jupyter Notebook containing Python
sDTW implementation and runtime model.

• Data set: Raw human, lambda phage, and SARS-CoV-2
FAST5 data from several public sources [4, 53].

• Run-time environment: Vivado 2019.1 and Jupyter Note-
book. Build instructions targeted to Ubuntu 18.

• Hardware: At least one CPU core and 10GB RAM for the
notebook. Recommended requirements for Xilinx Vivado
based on Xilinx SDK: min 2.2GHz, Intel Pentium 4, Intel
Core Duo, or Xeon Processors; SSE2 minimum.

• Output: Software regeneration of multiple figures from the
paper. Verification of hardware using SystemVerilog test-
bench.

• How much disk space required (approximately)?:
40GB public dataset download. 40GB for public dataset down-
load. Xilinx Vivado requires upto 30GB of diskspace for in-
stallation and an additional 2.5GB if Vivado simulation is
started.

• How much time is needed to complete experiments
(approximately)?: Jupyter Notebook requires 10 minutes
with 56 cores. Vivado simulation on the SARS-CoV-2 reads
can take 1-21 minutes on a Quadcore 8th Gen i5 with 8GB
RAM depending on the number of test-cases anyone may
wish to run.

• Publicly available?: Yes.
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.
5150973

A.3 Description
A.3.1 How to access. All of the source code is open source, and
can be obtained either through GitHub1 or Zenodo2.

A.3.2 Hardware dependencies. The SquiggleFilter code requires
approximately 10GB of RAM, and the datasets used require approx-
imately 40GB of disk space. Xilinx Vivado comes with the following
additional requirements on the processor: minimum 2.2GHz, Intel
Pentium 4, Intel Core Duo, or Xeon Processors; SSE2 minimum.

1https://github.com/TimD1/SquiggleFilter
2https://doi.org/10.5281/zenodo.5150973

A.3.3 Software dependencies. Any Linux OS can be used, but
a recent Ubuntu release is recommended for ease of in-
stallation. The Jupyter Notebook has multiple Python pack-
age dependencies, which will be installed by the setup.sh
script. For hardware evaluation, a recent installation of the
licensed Vivado Design Suite is recommended; we used re-
lease 2019.1. Further details on the installation can be found
on https://www.xilinx.com/support/download/index.html/content/
xilinx/en/downloadNav/vivado-design-tools/archive.html.

A.3.4 Data sets. Our artifact uses three raw nanopore signal
(FAST5) datasets:

• lambda: This dataset of 21,000 lambda phage reads was
generated in our laboratory, and is included in our GitHub
repository at data/lambda/fast5.

• covid: This dataset of 1.2 million SARS-CoV-2 reads is down-
loaded from the CADDE Centre [4] to data/covid/fast5
by the setup.sh script.

• human: This dataset of 65,000 huan reads is downloaded
from ONT Open Datasets [4] to data/human/fast5 by the
setup.sh script.

A.4 Installation
All source code is available in either our GitHub1 or Zenodo2 repos-
itories.

• README.md contains instructions for evaluating the arti-
facts

• design/ contains the SystemVerilog RTL and testbench.
testbench_top.sv is the top file of the testbench for be-
havioral simulation. normalizer_top.v is the top file for
the normalizer and it’s sub-modules. warper_top.sv is the
top file for the systolic array.

• sdtw_analysis.ipynb contains our software pipeline,
Python sDTW implementation, and runtime model.

• setup.sh is the setup script
• data/ contains all three datasets
• scripts/ contains all scripts used for data analysis

Please follow all instructions from README.md to evaluate the arti-
facts.

A.5 Evaluation and expected results
A.5.1 Hardware. After installing and running Vivado, go under
settings and change the simulation run time to 18ms for complete
simulation. On the flow navigator, pressing the run simulation op-
tion would start the simulation and messages would start appearing
on the tcl console printing whether the testcases passed or failed.
We observe and expect all the testcases to pass. Additionally, the
waveform may be viewed as the simulation begins. Please find
detailed instructions in README.md.

A.5.2 Software. After the Jupyter Notebook is running, please se-
lect the sf-venv3 kernel (Kernel -> Change Kernel) created
by the setup.sh script. Then, run all cells in order (Kernel ->
Restart and Run All). The entire pipeline should run success-
fully, computing the sDTW scores on the datasets selected and
regenerating most of the figures in our paper.

547

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Dunn and Sadasivan, et al.

A.6 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES
[1] Abbott. 2021. Navica App and BinaxNOW COVID-19 Ag Test Card.

https://www.globalpointofcare.abbott/en/product-details/navica-binaxnow-
covid-19-us.html Abbott Point of Care Testing.

[2] Donald J Berndt and James Clifford. 1994. Using dynamic time warping to find
patterns in time series.. In KDD workshop, Vol. 10. Seattle, WA, USA:, 359–370.

[3] Clive Brown. 2019. Technology Update. (2019). https://nanoporetech.com/
resource-centre/nanopore-community-meeting-2019-technology-update
Nanopore Community Meeting.

[4] CADDE. 2020. Brazil-UK Centre for Arbovirus Discovery, Diagnosis, Genomics
and Epidemiology. https://cadde.s3.climb.ac.uk/SP1-raw.tgz

[5] Damla Senol Cali, Gurpreet S Kalsi, Zülal Bingöl, Can Firtina, Lavanya Sub-
ramanian, Jeremie S Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan
Gomez-Luna, Amirali Boroumand, et al. 2020. GenASM: A High-Performance,
Low-Power Approximate String Matching Acceleration Framework for Genome
Sequence Analysis. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 951–966.

[6] Harrison S Edwards, Raga Krishnakumar, Anupama Sinha, Sara W Bird, Kam-
lesh D Patel, and Michael S Bartsch. 2019. Real-time Selective Sequencing with
RUBRIC: Read until with basecall and reference-informed criteria. Scientific
Reports 9, 1 (2019), 1–11.

[7] Harrison S Edwards, Raga Krishnakumar, Anupama Sinha, Sara W Bird, Kam-
lesh D Patel, and Michael S Bartsch. 2019. Real-time selective sequencing with
RUBRIC: read until with basecall and reference-informed criteria. Scientific
reports 9, 1 (2019), 1–11.

[8] Daichi Fujiki, Arun Subramaniyan, Tianjun Zhang, Yu Zeng, Reetuparna Das,
David Blaauw, and Satish Narayanasamy. 2018. Genax: a genome sequencing
accelerator. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 69–82.

[9] Daichi Fujiki, Shunhao Wu, Nathan Ozog, Kush Goliya, David Blaauw, Satish
Narayanasamy, and Reetuparna Das. 2020. SeedEx: A Genome Sequencing
Accelerator for Optimal Alignments in Subminimal Space. In 2020 53rd Annual
IEEE/ACM International Symposium onMicroarchitecture (MICRO). IEEE, 937–950.

[10] Meriadeg AR GOUILH, Renaud CASSIER, Elodie MAILLE, Cecile Schanen, Louis-
Marie ROCQUE, andAstrid VABRET. 2020. An easy, reliable and rapid SARS-CoV2
RT-LAMP based test for Point-of-Care and diagnostic lab. medRxiv (2020).

[11] Alexander L Greninger, Samia N Naccache, Scot Federman, Guixia Yu, Placide
Mbala, Vanessa Bres, Doug Stryke, Jerome Bouquet, Sneha Somasekar, Jeffrey M
Linnen, et al. 2015. Rapid metagenomic identification of viral pathogens in
clinical samples by real-time nanopore sequencing analysis. Genome medicine 7,
1 (2015), 99.

[12] James Hadfield, Colin Megill, Sidney M Bell, John Huddleston, Barney Potter,
Charlton Callender, Pavel Sagulenko, Trevor Bedford, and Richard A Neher. 2018.
Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 23 (2018),
4121–4123.

[13] Tae Jun Ham, David Bruns-Smith, Brendan Sweeney, Yejin Lee, Seong Hoon Seo,
U Gyeong Song, Young H Oh, Krste Asanovic, Jae W Lee, and Lisa Wu Wills.
2020. Genesis: a hardware acceleration framework for genomic data analysis. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 254–267.

[14] Renmin Han, Yu Li, Xin Gao, and Sheng Wang. 2018. An accurate and rapid
continuous wavelet dynamic time warping algorithm for end-to-end mapping in
ultra-long nanopore sequencing. Bioinformatics 34, 17 (2018), i722–i731.

[15] Joe Hasell, Edouard Mathieu, Diana Beltekian, Bobbie Macdonald, Charlie Giat-
tino, Esteban Ortiz-Ospina, Max Roser, andHannah Ritchie. 2020. A cross-country
database of COVID-19 testing. Scientific data 7, 1 (2020), 1–7.

[16] Phillip James, David Stoddart, Eoghan D Harrington, John Beaulaurier, Lynn Ly,
Stuart Reid, Daniel J Turner, and Sissel Juul. 2020. LamPORE: rapid, accurate
and highly scalable molecular screening for SARS-CoV-2 infection, based on
nanopore sequencing. medRxiv (2020).

[17] Eamonn Keogh and Shruti Kasetty. 2003. On the need for time series data mining
benchmarks: a survey and empirical demonstration. Data Mining and knowledge
discovery 7, 4, 349–371.

[18] S Karen Khatamifard, Zamshed Chowdhury, Nakul Pande, Meisam Razaviyayn,
Chris Kim, and Ulya R Karpuzcu. 2017. A non-volatile near-memory readmapping
accelerator. arXiv preprint arXiv:1709.02381 (2017).

[19] Duncan Kilburn, Jeff Burke, Renee Fedak, Hugh Olsen, Miten Jain, Karen Miga,
Simon Mayes, and Kelvin Liu. [n. d.]. High Data Throughput and Low Cost Ultra

Long Nanopore Sequencing. https://15a13b02-7dac-4315-baa5-b3ced1ea969d.
filesusr.com/ugd/5518db_164bac27f4654b1f94d3472f09372498.pdf

[20] Sam Kovaka, Yunfan Fan, Bohan Ni, Winston Timp, and Michael C Schatz. 2020.
Targeted nanopore sequencing by real-time mapping of raw electrical signal
with UNCALLED. BioRxiv (2020).

[21] LGC. 2021. 2019-nCoV CDC-qualified Probe and Primer Kits for SARS-CoV-
2. https://www.biosearchtech.com/products/pcr-kits-and-reagents/pathogen-
detection/2019-ncov-cdc-probe-and-primer-kit-for-sars-cov-2 LGC Biosearch
Technologies.

[22] Heng Li. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioin-
formatics 34, 18 (2018), 3094–3100.

[23] Nicholas J Loman, Joshua Quick, and Jared T Simpson. 2015. A complete bacterial
genome assembled de novo using only nanopore sequencing data. Nature methods
12, 8 (2015), 733–735.

[24] Matthew Loose, Sunir Malla, and Michael Stout. 2016. Real-time selective se-
quencing using nanopore technology. Nature methods 13, 9 (2016), 751.

[25] Gita Mahmoudabadi and Rob Phillips. 2018. A comprehensive and quantitative
exploration of thousands of viral genomes. Elife 7 (2018), e31955.

[26] Anthony J McMichael. 2004. Environmental and social influences on emerging
infectious diseases: past, present and future. Philosophical Transactions of the
Royal Society of London. Series B: Biological Sciences 359, 1447 (2004), 1049–1058.

[27] Gage Moreno and David O’Connor. 2020. Sequence-Independent, Single-
Primer Amplification of RNA viruses V.3. https://www.protocols.io/view/
sequence-independent-single-primer-amplification-o-bckxiuxn.html University
of Wisconsin-Madison.

[28] Anirban Nag, CN Ramachandra, Rajeev Balasubramonian, Ryan Stutsman,
Edouard Giacomin, Hari Kambalasubramanyam, and Pierre-Emmanuel Gail-
lardon. 2019. Gencache: Leveraging in-cache operators for efficient sequence
alignment. In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture. 334–346.

[29] Mayu Nagura-Ikeda, Kazuo Imai, Sakiko Tabata, Kazuyasu Miyoshi, Nami Mu-
rahara, Tsukasa Mizuno, Midori Horiuchi, Kento Kato, Yoshitaka Imoto, Maki
Iwata, et al. 2020. Clinical evaluation of self-collected saliva by RT-qPCR, direct
RT-qPCR, RT-LAMP, and a rapid antigen test to diagnose COVID-19. Journal of
Clinical Microbiology (2020).

[30] NEB. 2021. SARS-CoV-2 Rapid Colorimetric LAMP Assay Kit. https://www.
neb.com/products/e2019-sars-cov-2-rapid-colorimetric-lamp-assay-kit New
England Biolabs.

[31] NVIDIA. [n. d.]. Jetson AGX Xavier Developer Kit. https://developer.nvidia.
com/embedded/jetson-agx-xavier-developer-kit

[32] ONT. 2020. Metagenomic analysis of SARS-CoV-2 respiratory samples via
Sequence-Independent Single Primer Amplification (SISPA) and nanopore se-
quencing. https://nanoporetech.com/sites/default/files/s3/literature/COVID-
19_metagenomic_sequencing.pdf Oxford Nanopore Technologies.

[33] ONT. 2020. ont-fast5-api. https://pypi.org/project/ont-fast5-api/ FAST5 API: a
simple interface to HDF5 files of the Oxford Nanopore .fast5 file format.

[34] ONT. 2020. ont-pyguppy-client-lib. https://pypi.org/project/ont-pyguppy-client-
lib/ PyGuppy: Python bindings for the GuppyClient library.

[35] ONT. 2021. cDNA PCR Sequencing Kit. https://store.nanoporetech.com/us/
sample-prep/cdna-pcr-sequencing-kit.html Oxford Nanopore Technologies.

[36] ONT. 2021. Direct cDNA Sequencing Kit. https://store.nanoporetech.com/us/
sample-prep/direct-cdna-sequencing-kit.html Oxford Nanopore Technologies.

[37] ONT. 2021. Direct RNA Sequencing Kit. https://store.nanoporetech.com/us/
catalog/product/view/id/297/s/direct-rna-sequencing-kit/category/28/ Oxford
Nanopore Technologies.

[38] ONT. 2021. MinION DNA Sequencer. https://nanoporetech.com/products/
minion Oxford Nanopore Technologies.

[39] ONT. 2021. Rapid Library Preparation Kit (SQK-RAD004). https://store.
nanoporetech.com/us/sample-prep/rapid-sequencing-kit.html Oxford Nanopore
Technologies.

[40] ONT. 2021. Read Until API. https://github.com/nanoporetech/read_until_api
Oxford Nanopore Technologies.

[41] Myungsun Park, Joungha Won, Byung Yoon Choi, and C Justin Lee. 2020. Opti-
mization of primer sets and detection protocols for SARS-CoV-2 of coronavirus
disease 2019 (COVID-19) using PCR and real-time PCR. Experimental & molecular
medicine 52, 6 (2020), 963–977.

[42] Neev V. Patel. [n. d.]. Why the CDC Botched Its Coronavirus Test-
ing. https://www.technologyreview.com/2020/03/05/905484/why-the-cdc-
botched-its-coronavirus-testing/ MIT Technology Review.

[43] Alexander Payne, Nadine Holmes, Thomas Clarke, Rory Munro, Bisrat Debebe,
and Matthew W Loose. 2020. Nanopore adaptive sequencing for mixed samples,
whole exome capture and targeted panels. BioRxiv (2020).

[44] Josh Quick and Nick Loman. [n. d.]. ARTIC V3 Update Notes. https://artic.
network/resources/ncov/ncov-amplicon-v3.pdf

[45] Richard Ronan. [n. d.]. Read Until adaptive sampling. https://nanoporetech.com/
resource-centre/read-until-adaptive-sampling Oxford Nanopore Technologies.

[46] Doruk Sart, AbdullahMueen,Walid Najjar, Eamonn Keogh, and Vit Niennattrakul.
2010. Accelerating dynamic time warping subsequence search with GPUs and

548

SquiggleFilter: An Accelerator for Portable Virus Detection MICRO ’21, October 18–22, 2021, Virtual Event, Greece

FPGAs. In 2010 IEEE International Conference on Data Mining. IEEE, 1001–1006.
[47] Thomas Sauvage, William E Schmidt, Hwan Su Yoon, Valerie J Paul, and Suzanne

Fredericq. 2019. Promising prospects of nanopore sequencing for algal hologe-
nomics and structural variation discovery. BMC genomics 20, 1 (2019), 1–17.

[48] Pavel Senin. 2008. Dynamic time warping algorithm review. Information and
Computer Science Department University of Hawaii at Manoa Honolulu, USA 855,
1-23 (2008), 40.

[49] Yuelong Shu and John McCauley. 2017. GISAID: Global initiative on sharing all
influenza data–from vision to reality. Eurosurveillance 22, 13 (2017), 30494.

[50] Marcus Stoiber, Joshua Quick, Rob Egan, Ji Eun Lee, Susan Celniker,
Robert K. Neely, Nicholas Loman, Len A Pennacchio, and James Brown. 2017.
De novo Identification of DNA Modifications Enabled by Genome-Guided
Nanopore Signal Processing. bioRxiv (2017). https://doi.org/10.1101/094672
arXiv:https://www.biorxiv.org/content/early/2017/04/10/094672.full.pdf

[51] VK Sundaresan, Sanjay Nichani, N Ranganathan, and Ravi Sankar. 1992. A
VLSI hardware accelerator for dynamic time warping. In 11th IAPR International
Conference on Pattern Recognition. Vol. IV. Conference D: Architectures for Vision
and Pattern Recognition,, Vol. 1. IEEE Computer Society, 27–30.

[52] Oxford Nanopore Technologies. 2017. kmer_models. https://github.com/
nanoporetech/kmer_models. GitHub repository (2017).

[53] Oxford Nanopore Technologies. 2020. ONT Open Datasets: GM24385 Dataset
Release. https://nanoporetech.github.io/ont-open-datasets/gm24385_2020.09/

[54] Yatish Turakhia, Gill Bejerano, and William J Dally. 2018. Darwin: A genomics
co-processor provides up to 15,000 x acceleration on long read assembly. ACM
SIGPLAN Notices 53, 2 (2018), 199–213.

[55] John R Tyson, Phillip James, David Stoddart, Natalie Sparks, ArthurWickenhagen,
Grant Hall, Ji Hyun Choi, Hope Lapointe, Kimia Kamelian, Andrew D Smith,
et al. [n. d.]. Improvements to the ARTIC multiplex PCR method for SARS-CoV-2

genome sequencing using nanopore. bioRxiv ([n. d.]).
[56] Robert Vaser, Ivan Sović, Niranjan Nagarajan, and Mile Šikić. 2017. Fast and

accurate de novo genome assembly from long uncorrected reads. Genome research
27, 5 (2017), 737–746.

[57] Shan Wei, Zachary R Weiss, and Zev Williams. 2018. Rapid multiplex small DNA
sequencing on the MinION nanopore sequencing platform. G3: Genes, Genomes,
Genetics 8, 5 (2018), 1649–1657.

[58] Ryan R Wick, Louise M Judd, and Kathryn E Holt. 2019. Performance of neural
network basecalling tools for Oxford Nanopore sequencing. Genome biology 20,
1 (2019), 129.

[59] Rachael E Workman, Alison D Tang, Paul S Tang, Miten Jain, John R Tyson,
Philip C Zuzarte, Timothy Gilpatrick, Roham Razaghi, Joshua Quick, Norah
Sadowski, et al. 2018. Nanopore native RNA sequencing of a human poly (A)
transcriptome. BioRxiv (2018), 459529.

[60] Chris Wright. 2020. Medaka. https://nanoporetech.github.io/medaka/ Medaka -
Medaka 1.2.0 documentation.

[61] Lisa Wu, David Bruns-Smith, Frank A Nothaft, Qijing Huang, Sagar Karandikar,
Johnny Le, Andrew Lin, Howard Mao, Brendan Sweeney, Krste Asanović, et al.
2019. Fpga accelerated indel realignment in the cloud. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 277–290.

[62] Lin Zhang, Xiangfeng Cui, Karin Schmitt, Rene Hubert, William Navidi, and Nor-
man Arnheim. 1992. Whole genome amplification from a single cell: implications
for genetic analysis. Proceedings of the National Academy of Sciences 89, 13 (1992),
5847–5851.

[63] Peng Zhou, Xing-Lou Yang, Xian-Guang Wang, Ben Hu, Lei Zhang, Wei Zhang,
Hao-Rui Si, Yan Zhu, Bei Li, Chao-Lin Huang, et al. 2020. A pneumonia outbreak
associated with a new coronavirus of probable bat origin. nature 579, 7798 (2020),
270–273.

549

