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Abstract
A key problem in computational biology is dis-
covering the gene expression changes that regu-
late cell fate transitions, in which one cell type
turns into another. However, each individual cell
cannot be tracked longitudinally, and cells at the
same point in real time may be at different stages
of the transition process. This can be viewed as
a problem of learning the behavior of a dynam-
ical system from observations whose times are
unknown. Additionally, a single progenitor cell
type often bifurcates into multiple child cell types,
further complicating the problem of modeling the
dynamics. To address this problem, we developed
an approach called variational mixtures of ordi-
nary differential equations. By using a simple
family of ODEs informed by the biochemistry of
gene expression to constrain the likelihood of a
deep generative model, we can simultaneously
infer the latent time and latent state of each cell
and predict its future gene expression state. The
model can be interpreted as a mixture of ODEs
whose parameters vary continuously across a la-
tent space of cell states. Our approach dramati-
cally improves data fit, latent time inference, and
future cell state estimation of single-cell gene ex-
pression data compared to previous approaches.

1. Introduction
The human body contains many cell types with distinct
forms and functions, which arise from progenitor cells in a
stepwise developmental process. A key question in molec-
ular biology is what regulates this process of cellular de-
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velopment. In general, the diversity of cell types arises not
from cell-to-cell differences in the DNA sequence itself, but
in which portions of the DNA sequence (genes) are used
(expressed) in each cell. The central dogma of molecular
biology states that genes are first transcribed into messen-
ger RNAs (mRNAs) and these mRNAs are then translated
into proteins, which carry out biochemical functions. The
expression level of a gene in a cell can thus be quantified by
the number of mRNA molecules present in the cell. There-
fore, understanding cellular development requires modeling
how mRNA expression changes over time. Such models are
crucial for numerous areas of biology and medicine, such
as neuroscience, cancer research, and regenerative stem-cell
therapies.

We are interested in the following problem that arises in
the context of modeling cellular gene expression changes.
Each sample (cell), indexed by i, is represented by a vector
Xi(t) ∈ Rd parametrized by time t. The trajectory Xi(t) is
governed by some differential equation plus random noise.
However, for each i, only the vector xi := Xi(ti) is ob-
served at some unknown time ti. Our goal is two-fold:
recover the latent time ti for each sample and predict future
states, i.e., Xi(t) for t > ti.

This unusual observation model stems from the limitations
of single-cell RNA sequencing (scRNA-seq), the predom-
inant experimental technology for measuring gene expres-
sion. The scRNA-seq technology (Tang et al., 2009) counts
the number of mRNA sequences expressed within a set of
individual cells, ultimately yielding a matrix of expression
levels for 20, 000 genes across 104 − 106 cells. However,
measurement destroys the cell, so scRNA-seq gives only one
single static snapshot of each cell at some moment in time.
Second, the process of cell development is asynchronous–
each cell takes a different amount of time to develop, so at a
given moment, cells in a population will be at different de-
velopmental stages. An additional challenge is that a single
starting cell type often bifurcates into multiple distinct cell
types, so that cell-type-specific dynamics emerge over time.

Our key insight is that knowledge about the biochemical
steps required for gene expression can serve as a regular-
ization or constraint for this otherwise ill-posed problem.
By partially specifying the form of a differential equation
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describing the data generation process, we can simultane-
ously recover the unknown times and predict future states
of the system. Our model can be interpreted as a varia-
tional autoencoder that reconstructs the data with an ODE
whose parameters vary continuously across a latent space of
cell states. Thus, we refer to our approach as a variational
mixture of ODEs.

To our knowledge, this problem of learning a dynamical
system from observations with unknown times has not been
well studied. Previous papers have used both deep gen-
erative models and dynamical systems. But no previous
work has demonstrated that these two approaches can be
combined to solve the two-fold problem described earlier.
Thus, this is a great example of an interesting problem aris-
ing from a computational biology application. Our work
also adds another item to the growing list of neural network
models that achieve a new state of the art on a problem of
high scientific interest.

The novel aspects of this work include:

1. We simultaneously estimate the times and dynamics of
observations with unknown time labels.

2. By incorporating mechanistic insights about the biochem-
ical process of gene expression, our model learns latent
variables with clear biological meanings.

3. Our approach dramatically improves the accuracy of
time estimation and future state prediction compared to
state-of-the-art approaches used by computational biolo-
gists, and thus has significant implications for biomedical
research.

2. Related Work
Pseudotime Inference Methods. Various methods have
been applied to scRNA-seq data to uncover cellular de-
velopment paths. Pseudotime inference methods use dis-
tance from a manually-specified starting cell to rank cells
according to degree of development. Diffusion pseudo-
time (Haghverdi et al., 2016) models cell development as a
Markov process with a transition matrix. Other works (Qiu
et al., 2017; Schiebinger et al., 2019) directly aim at deter-
mining the trajectory, i.e. putting the cells on one or multiple
developmental paths.

RNA Velocity. La Manno et al. (2018) developed the con-
cept of RNA velocity based on the observation that both un-
spliced and spliced mRNA molecules appear in sequencing
outputs. The relative ratio of spliced and unspliced counts
can indicate whether the gene was being turned on or turned
off at the time the cell was sequenced. They introduced an
ODE model to describe the gene expression process and
used a steady state assumption to estimate parameters. Later
work (Bergen et al., 2020) relaxed the steady-state assump-
tion, allowing all cells to be used in parameter estimation.

These RNA velocity methods have been widely used by bi-
ologists to help understand cellular development processes
(Plass et al., 2018; Wilk et al., 2020; Litviňuková et al.,
2020) and are currently the state of the art in this area.

Deep Generative Models for scRNA-seq Data. Previous
papers have applied deep generative models to study scRNA-
seq data. Many works (Wang & Gu, 2018; Lopez et al.,
2018; Grønbech et al., 2020) have shown that variational au-
toencoders can learn useful latent representations for identi-
fying cell types. In addition, Lotfollahi et al. (2019) showed
that arithmetic operations of latent representation learned
from scRNA-seq data can generate meaningful data cor-
responding to gene perturbation. BasisDeVAE (Danks &
Yau, 2021) used a VAE to simultaneously infer similarity-
based pseudotime and cluster genes by their pseudotime
trends. VeloAE (Qiao & Huang, 2021) embedded RNA
velocity estimates from the steady-state model and spliced
gene expression in the same latent space.

Learning a Dynamical System. The problem of learning
dynamical systems from high-dimensional datasets has been
studied in many science and engineering domains. Early
works (Calderhead et al., 2009; Dondelinger et al., 2013)
applied gradient matching to estimate differential equation
parameters. These methods involve MCMC sampling dur-
ing the inference. Later works (Gorbach et al., 2017; Ghosh
et al., 2021) improved the scalability and computational cost
using variational inference. Another type of method called
Neural ODEs (Chen et al., 2018; Yildiz et al., 2019; Huang
et al., 2021) was proposed to model time series. It assumes a
dynamical system described by an ODE in the latent space.

Key Limitations of Previous Work. Each of these four
classes of approaches has key limitations. Cell trajectory
inference is based purely on pairwise similarity and cannot
infer the directions or rates of cell development. RNA veloc-
ity enables mechanistic modeling of cell development, al-
lowing quantitative analysis of gene expression and cell fate
prediction. However, current methods have many limiting
assumptions and fail to yield accurate results in many cases,
such as when transcription rates vary over time or multiple
lineages arise from the same progenitor cell type (Bergen
et al., 2021). Deep generative models for single-cell data
can learn cellular representations, but they have not incor-
porated the mechanistic insights from the RNA velocity ap-
proaches. General methods for learning dynamical systems
require time information, so they are not directly applicable
to datasets without time labels. To address these limitations,
we propose VeloVAE, a variational mixture of ODEs that
jointly recovers cell times and gene expression dynamics.
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3. Methods
Section 3.1 and 3.2 introduce the problem statement and
background information about previous computational meth-
ods. Next, we describe a basic model that assumes fixed
cellular dynamics to infer latent time in 3.3. Finally, we de-
scribe our proposed method, a variational mixture of ODEs.

3.1. Problem Setup

The key biochemical insight underlying our approach is that
to express a gene, two types of RNA, nascent unspliced and
mature spliced RNA, are produced sequentially. First, un-
spliced RNAs are directly transcribed from DNA sequences
and contain non-protein-encoding sequences (introns). Next,
the introns are removed so that nascent molecules are con-
verted into mature ones (Fig. 1). To put it another way,
increases in the unspliced count (u) for a gene must pre-
cede increases in the spliced count (s). This simple insight
makes it possible to recover the ordering of cells lacking
time labels.

We assume that a dynamical system F (t;θ) generates
scRNA count data. Here, θ is a set of parameters describing
the system, such as the transcription, splicing and degra-
dation rates (introduced later; see Fig. 1). Our goal is to
use observed scRNA data to simultaneously estimate the
parameters θ of F and infer the unknown cell times t.

Definition 3.1. Let ug and sg denote the unspliced and
spliced mRNA count of the g-th gene. Let G =
{1, 2, . . . , G} be a set of genes measured in an scRNA-
seq experiment. The feature vector of a cell is defined as
x = [u1, u2, . . . , uG, s1, s2 . . . , sG]

T .

Definition 3.2. The kinetic equation of gene g is de-
fined as a system of ordinary differential equations relating
changes in u and s over time. If there exists a solution
F (t;θ) to the initial value problem with u(0) = u0, s(0) =
s0, we call this solution the kinetic function for g.

Definition 3.3. Given a kinetic function u(t) and s(t) of a
gene, the RNA velocity of the gene is defined as ds

dt .

3.2. Modeling Gene Expression Kinetics

In previous work (La Manno et al., 2018), the kinetic equa-
tion is modeled by a system of two linear ODEs:

du

dt
= αI{t<toff} − βu,

ds

dt
= βu− γs, (1)

where I{·} is an indicator function for the condition in brack-
ets. The model parameters α, β and γ correspond to the
RNA transcription, splicing and degradation rates, respec-
tively. The model assumes that two discrete phases can
occur in the gene expression process: (1) induction, when
new unspliced RNA molecules are being transcribed and
(2) repression, when the transcription process stops and no
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Figure 1: Gene Expression Kinetics. Top: A gene is tran-
scribed into nascent RNA before being spliced into mature
RNA and subsequently degraded. Bottom: temporal rela-
tionships between u and s implied by the model above.

new unspliced molecules are made. The induction phase is
assumed to start at ton = 0 and the transition from induction
to repression occurs at time toff .

Parameter Estimation by Steady-State Assumption. If
the induction phase lasts for a long time, u and s will asymp-
totically converge to a stable value, called the steady state.
We denote the steady-state values uss and sss. The initial ap-
proach to estimating the parameters of the kinetic equation
in the absence of cell times was to assume that the cells have
reached steady state (La Manno et al., 2018). A simple cal-
culation shows that the steady-state condition of the kinetic
equation (1) is uss = α

β and sss = α
γ . Suppose we have a

set of measurements of u and s. We pick the top quantile,
u∗ and s∗, as the approximate steady-state values. If we
further assume that β = 1, then the estimated parameters
are α̂ = u∗, β̂ = 1 (by assumption), and γ̂ = u∗

s∗ .

Dynamical Model and EM Algorithm. In practice, real-
world datasets contain many cells that are not at the steady
state; in fact, for some genes, only transient states are ob-
served. The steady-state estimation method does not utilize
these transient cells. Thus, Bergen et al. (2020) developed
a dynamical model called scVelo for estimating the param-
eters of the kinetic equation without the steady-state as-
sumption. To deal with the absence of time, scVelo uses an
expectation-maximization (EM) algorithm to jointly infer
the latent times and model parameters. In this approach, they
first solve the kinetic equations (1) analytically to obtain the
kinetic function:

u(t) = u0 exp(−βτ) +
α̃

β
(1− exp(−βτ)) (2)

s(t) = s0 exp(−γτ) +
α̃

γ
(1− exp(−γτ))

+
α̃− βu0
γ − β

(exp(−γτ)− exp(−βτ)) (3)

α̃ := αI{t<toff}, τ := tI{t<toff} + (t− toff )I{t≥toff}

Note that the solution depends on the initial conditions
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u(0) = u0, s(0) = s0. ScVelo assumes that, given cell
time t, u and s are Gaussian random variables whose means
are given by the kinetic function (2),(3). Because the dy-
namical model makes use of the full ODE solution, it does
not require the steady-state assumption and produces better
RNA velocity estimates.

Limitations of scVelo. However, scVelo has several signif-
icant limitations. First, scVelo infers time separately for
each gene, which neglects crucial information about the
covariance of related genes and often leads to times that
are inconsistent across genes. This gene-specific notion of
time also makes it hard to compare the switch-off time (time
when a cell stops producing new RNA) across genes. The
lack of a common time scale, combined with the assumption
that induction starts at t = 0, also leads to frequent errors in
estimating the overall direction of a gene (increasing or de-
creasing). Genes with a short or missing induction phase are
particularly prone to being fit incorrectly by scVelo. Second,
scVelo assumes a constant transcription rate α within the
induction phase for each gene. In a recent review paper, the
scVelo developers note that this assumption is often violated
in real-world datasets, which leads to a variety of pathologi-
cal behaviors (Bergen et al., 2021). Finally, scVelo’s model
does not account for cell type bifurcations, which frequently
occur in cellular development (Bergen et al., 2021).

3.3. VeloVAE: Basic Model (Fixed Transcription Rate)

We first describe a deep generative model that recovers gene
expression dynamics and cell time jointly assuming a single
constant transcription rate for each gene. The model de-
scribed in this section is thus a basic form of the variational
mixture of ODE approach in section 3.4.

Generative Process. We assume that cell time t is first
randomly sampled from a normal prior N (t0, σ

2
0). If cell

capture times are available (e.g., if cells were isolated sep-
arately on days 7 and 14), we can use them as an informa-
tive prior; otherwise, we can simply use a standard normal
prior. We model the u and s counts for each gene using
the kinetic function given by the analytical ODE solution,
assuming that the genes are conditionally independent given
cell times. Then, given N i.i.d. time samples t1, t2, . . . , tN ,
gene expression data xi, i = 1, 2, . . . , N , are generated
by xi = F (ti;θ) + ri, ri ∼ N (0,Σr). Here, F (t;θ) =
[u1(t), u2(t), . . . , uG(t), s1(t), s2(t), . . . , sG(t)]

T is a vec-
tor containing all kinetic functions evaluated at t and r
is Gaussian random noise. Equivalently, this means that
the distribution of x conditioned on time is p(x|t,θ) ∼
N (F (t;θ),Σr). We further assume that the noise variables
r are mutually independent, i.e. Σr is diagonal with nonzero
entries σ2

u,1, σ
2
u,2, . . . , σ

2
u,G, σ

2
s,1, σ

2
s,2, . . . , σ

2
s,G.

ODE Formulation. We use a similar ODE model for
F (t;θ) as in previous work (La Manno et al., 2018; Bergen

Inference Model Generative Model

u s

h(u, s;φ)

µt σt µc σc

t cε

c ∼ N (0, I)

g(c;θρ)

ρ t ∼ N
(
t0, σ

2
0

)
ODE Solution: F (t;θ)

û ŝσu σs

u s

Figure 2: Graphical Model. Observed variables are col-
ored gray. Dashed arrows indicate sampling.

et al., 2020), with a slight modification. Instead of assuming
all genes start generating mRNA at t = 0, we allow asyn-
chronous generation by adding a gene-specific parameter,
ton. This small change, in addition to inferring latent time
jointly across genes, should alleviate scVelo’s difficulty in
fitting genes with an absent or short induction phase. The
kinetic function thus has the same form as equations (2) and
(3), except that the definition of τ changes:

τ := (t− ton)I{ton≤t<toff} + (t− toff )I{t≥toff}

Parameter Inference. Having formulated a generative
model, our goal is to estimate both the ODE parameters
θ and the unknown cell times ti. However, the posterior dis-
tribution of ti is intractable. Furthermore, unlike the scVelo
model in which each gene has its own separate estimate of
time, EM becomes much more difficult once cell time is
shared across genes (see Appendix A). Instead, we use vari-
ational inference to find t and θ. For our variational approxi-
mation, we use a Gaussian distribution whose parameters are
output by a neural network. That is, q(t|x) ∼ N (h(u, s;φ))
where h(·) is a neural network that outputs mean and vari-
ance. Following the argument by Kingma & Welling (2014),
we apply the reparameterization trick to approximate the
evidence lower bound (ELBO) via sampling:

ELBO =

N∑
i=1

Eq(t|xi) [log p(xi|t)]−KL(q(t|xi)||p(t))

≈1

2

N∑
i=1

[
−2G log(2π)− log |Σr| − d(xi, F (ti;θ);Σr)

2
]

+
1

2

[
log

σ2
p

σ2
q

+
σ2
q

σ2
p

+
(µp − µq)2

σ2
p

− 1

]
(4)

where F (ti;θ) is the kinetic function and d(·, ·;Σ) denotes
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the Mahalanobis distance with Σ as the covariance matrix.
We can then jointly estimate the neural network weights φ,
the ODE parameters θ, and the cell times ti by minimiz-
ing the negative ELBO using minibatch stochastic gradient
descent.

Neural Network Architecture. The encoder is a multilayer
perceptron (MLP) containing two hidden layers (500 and
250 neurons, respectively) with batch normalization (Ioffe
& Szegedy, 2015) and dropout (Srivastava et al., 2014). The
bottleneck layer outputs the mean and standard deviation
parameters of the variational distribution.

3.4. VeloVAE: Variational Mixture of ODE Model

Although the model in the previous section can jointly in-
fer cell times and ODE parameters, it still fails to capture
important aspects of cellular development. In particular,
constant transcription rates cannot account for bifurcations,
which occur when a single type of stem cell develops into
multiple descendant cell types. In fact, the possibility of
bifurcations means that u(t) and s(t) may no longer be
functions–multiple distinct cell states may be present at a
given point in time. To capture these complex dynamics, we
introduce a latent cell state variable c in addition to latent
time and allow the transcription rate to vary smoothly over
cell state space.

ODE Formulation. We adopt an ODE formulation simi-
lar to (1), except that the transcription rate for each gene
is not a single constant α anymore. Instead, we assume
that the kinetic equation is a continuous mixture of ODEs
with transcription rate parameters α̃ = ρα. The relative
transcription rate ρ ∈ [0, 1] is a function of latent cell state
c, and thus may be slightly different in each cell. The new
kinetic equation is:

du

dt
= ρα− βu, ds

dt
= βu− γs (5)

Note that there are no longer discrete induction and repres-
sion phases. This can be viewed as a generalization of (1),
since ρ = 1 and ρ = 0 correspond to the discrete induction
and repression phases, respectively, used in the simpler for-
mulation. Because ρ is constant with respect to time, we
can still solve the kinetic equation analytically to obtain a
closed form for the kinetic function F (t;θ) in terms of α,
β, γ, and ρ. The solution is the same as (2) and (3) except
that α̃ = ρα. Note also that for each gene, α, β, and γ are
still shared across cells. This model can now capture con-
tinuous transcription changes such as those in a bifurcating
developmental process.

Generative Process. The generative process for the varia-

tional mixture of ODE model is as follows:
t ∼ N (t0, σ

2
0), c ∼ N (0, I)

α̃ = ρ�α, ρ = g(c;θρ)

x ∼ N (F (t;θ),Σr)
Here, g(·) is a neural network with parameters θρ, � is the
elementwise product, F is the kinetic function of all genes,
and Σr is a diagonal covariance matrix. This generative
process relies on a function g mapping latent cell states c
to relative transcription rates ρ. Intuitively, the cell states
can model continuous and bifurcating developmental paths,
allowing the entire set of cells to be described as a family of
ODEs whose parameters vary smoothly over the cell state
manifold. We assume that ρ varies smoothly across the cell
state space and that each point in cell state space maps to
a unique ρ. Although g is deterministic for given c, the
inferred cell state for each cell x is probabilistic. Thus,
the distribution of ρ can encompass multiple states near a
bifurcation. Our generative model is summarized in figure
2.

Parameter Inference and Neural Network Architecture.
The objective function is the ELBO shown in equation (4),
with modified kinetic functions F (t;θ) and an updated KL
divergence term incorporating the prior for c. For h, we use
the same MLP structure as the simple model with two addi-
tional outputs to produce the posterior mean and standard
deviation of c. We use an MLP that is the mirror image of
h (two layers with 250 and 500 neurons, respectively) to
learn the mapping g from c to ρ. Source code is available
online 1.

Initial Conditions. Because each cell now potentially has
different ODE parameters, determining the initial conditions
is more complex. Thus, instead of making the initial condi-
tions trainable parameters, we simply train the model with
u0 = s0 = 0 in all of our experiments. This still yields ex-
cellent data reconstruction and latent time inference (Table
1). However, the initial conditions are important for accu-
rately predicting the future state of each cell. To improve
the accuracy of future state prediction, we first train the
VeloVAE to convergence using u0 = s0 = 0 so that latent
times and cell states are accurate, then determine the initial
conditions for a cell at time t by simply averaging the (u, s)
values observed in an immediately preceding time interval
[t−δ1, t−δ2]. We then fine-tune the ODE parameters using
these updated initial conditions, keeping latent time and cell
state fixed.

1https://github.com/welch-lab/VeloVAE
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Figure 3: VeloVAE Architecture. (a) Basic Model. An encoder network infers a latent time from all u and s values for
each cell. The data are reconstructed from inferred time using the kinetic function, whose analytical form is known. (b) Full
Model. An encoder network infers both latent time and latent cell state c. A decoder network generates the transcription
rates ρ, which are unique for each cell and each gene. The data are then reconstructed from t and ρ using the kinetic
function.

4. Experiments
4.1. Datasets

We evaluated our method on 6 different scRNA-seq datasets:
pancreatic endocrinogenesis (PE) (Bastidas-Ponce et al.,
2019), dentate gyrus (DG1,DG2) (Hochgerner et al., 2018;
La Manno et al., 2018), embryonic E18 mouse brain cor-
tex from 10X Genomics (MB1)2, the erythroid lineage
from mouse gastrulation (ET) (Pijuan-Sala et al., 2019),
and part of a whole mouse brain development dataset
(MB2) (La Manno et al., 2021). See Appendix B for details.
Each dataset contains two cell-by-gene count matrices–one
for unspliced counts and one for spliced counts. The matri-
ces are preprocessed as described in the scVelo paper.

4.2. Training

For all experiments, we performed minibatch stochastic gra-
dient descent using the ADAM optimizer with learning rate
2×10−4 and batch size of 128. For each dataset, we trained
on 70% of the data until the ELBO converged on the training
set (number of epochs varied due to differences in dataset
size), then evaluated the reconstruction error and likelihood
on the held-out test set. We used 5 latent dimensions for
cell state c in all experiments. For datasets with more than
one capture time, we used the capture times to initialize
the ODE parameters; otherwise, we used the steady-state
approximation for initialization.

4.3. Results

We evaluated our method and compared it with scVelo, the
state-of-the-art method for RNA velocity computation. To
assess the importance of the mixture of ODEs, we also eval-
uated the basic model with fixed transcription rate. We used
several metrics to compare the performance of the methods.
First, we assessed how well the models fit the observed

2https://www.10xgenomics.com/resources/datasets/fresh-
embryonic-e-18-mouse-brain-5-k-1-standard-1-0-0

data. The limitations of the single-cell data itself preclude
ground truth for the cell times. However, the inferred times
should at least be correlated with the cell capture times when
available (usually on the order of days). We also evaluated
the results qualitatively using biological knowledge of the
overall properties of cellular development in the systems we
studied. Our results show that VeloVAE fits the data and
estimates cell times far more accurately than scVelo, while
recovering qualitative properties of cellular development
that scVelo cannot model.

Table 1: Performance on scRNA-seq Datasets. We compare
scVelo (SOTA), Basic Model (VAE with fixed rates), and
VeloVAE (our proposed method). The metrics we use are
(1) MSE = Mean Squared Error; (2) kt = Time correlation;
and (3) kt(Info.) = Time correlation under informative prior

DATASET METHOD MSE kt kt(INFO.)

SCVELO 2.107 N/A N/A
PE BASIC MODEL 6.815 N/A N/A

VELOVAE 0.823 N/A N/A

SCVELO 0.670 N/A N/A
DG1 BASIC MODEL 0.574 N/A N/A

VELOVAE 0.243 N/A N/A

SCVELO 10.160 N/A N/A
MB1 BASIC MODEL 10.431 N/A N/A

VELOVAE 1.886 N/A N/A

SCVELO 0.873 -0.707 N/A
ET BASIC MODEL 0.246 0.802 0.802

VELOVAE 0.151 0.622 0.855

SCVELO 1.385 -0.158 N/A
DG2 BASIC MODEL 0.968 0.304 0.306

VELOVAE 0.159 0.529 0.707

SCVELO 18.19 -0.777 N/A
MB2 BASIC MODEL 2.295 0.621 0.629

VELOVAE 0.152 0.870 0.897
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4.3.1. DATA RECONSTRUCTION

We used three metrics–mean squared error (MSE), mean
absolute error (MAE), and log likelihood (LL)–to assess
how well each method fits the data. For our two models, we
calculated these metrics on both a training dataset (70%)
and held-out test dataset (30%). Note that we are not able to
calculate these metrics on a test set using scVelo, because
it does not have a way to perform out-of-sample prediction.
Training MSE results are shown in Table 1; other metrics
can be found in Appendix C. The basic model generally
achieves better MSE than scVelo, although the results are
worse on the PE and MB1 datasets. This may be because
scVelo fits each gene separately, estimating N × G latent
time parameters (one for each cell and each gene) rather
thanN latent time values estimated by the basic model. This
allows scVelo to essentially overfit the data by separately
adjusting the latent time values for each gene, but leads
to severe inconsistency in cell time across genes and poor
recovery of the overall cell times, as shown in Section 4.3.2.
In contrast, the VeloVAE model consistently achieves the
best reconstruction by a wide margin despite estimating only
N latent times. This suggests that the variational mixture of
ODEs is crucial for accurately fitting the data. Furthermore,
the test set is reconstructed nearly as accurately as the train-
ing set, indicating that the VeloVAE generalizes well and is
not simply overfitting the training data.

4.3.2. TIME INFERENCE

Evaluating the latent time inference is challenging, be-
cause ground truth times are not available due to exper-
imental limitations. However, three of the datasets (ET,
DG2, MB2) contain data collected in multiple experiments
across several days. The time stamps of these experi-
ments (capture times) have very coarse granularity, and
cells captured at the same time will span a wide range
of developmental stages. Nevertheless, the inferred cell
times should at least be correlated with the capture times.
Thus, we computed the Spearman correlation between the
cell times inferred by each method and the capture times.

Table 2: Correlation between
scVelo’s gene-specific and
global time, averaged across all
genes

DATASET CORRELATION

PE 0.262
DG1 0.097
MB1 0.226
ET 0.103

DG2 -0.008
MB2 -0.272

Because VeloVAE can
use the capture times
as an informative prior
for the cell times, we
reported the correla-
tion when using either
a capture time prior
or an uninformative
prior in Table 1. Al-
though scVelo infers
latent time separately
for each gene, the tool
provides a post-hoc
procedure for estimat-

ing a single global time for each cell. Using this global
time for comparison with our methods casts scVelo in the
best possible light because the global time is more robust
than the gene-specific latent times. Table 1 indicates that
VeloVAE and the basic model both significantly outperform
scVelo at inferring latent time. In fact, the scVelo global
time is anticorrelated with capture time in all three datasets.
In contrast, VeloVAE achieves the best performance, infer-
ring latent times that are strongly correlated with capture
time even with an uninformative time prior. The informa-
tive prior further increases the correlation. Figure 4 (a)-(c)
visualize the true capture time and inferred cell time on the
UMAP coordinates.

The low time correlation from scVelo may be partly ex-
plained by inconsistency among the different notions of
time fitted for each gene. To investigate this further, we
computed the average time correlation between scVelo’s
gene-specific and global latent time. As Table 2 shows, the
correlation is indeed quite low. Furthermore, it has been
reported (Bergen et al., 2021) that genes whose kinetics
violate some of the assumptions of scVelo’s ODE model can
lead to inferred time that proceeds in the wrong direction–
consistent with what we observed here.

4.3.3. QUALITATIVE ADVANTAGES OF VELOVAE

VeloVAE Fits Early Repression and Late Induction
Genes. The restrictive assumptions of scVelo’s ODE model,
in concert with the separate inference of time for each gene,
lead to very poor fits for many genes. In particular, scVelo
suffers from systematic errors in genes that are turned off at
the beginning of the process (early repression) or do not turn
on until late in the process (late induction). For example,
Fig. 5 shows the predicted values for Smoc1 (early repres-
sion gene) and Gng12 (late induction gene) in the PE dataset.
In this dataset, the endocrine progenitor cells (Ngn3 low
EP and Ductal) develop into four terminal cell types, alpha,
beta, delta and epsilon. To fit Smoc1, scVelo rearranges the
cell times to force an induction phase, creating a biologi-
cally incorrect ordering where progenitor cells appear in
the middle of time and incorrectly predicting an increase in
gene expression at the beginning of time. Similarly, when
fitting Gng12, scVelo rearranges cell times to force all of
the cells into the induction phase, leading to the incorrect
prediction that Gng12 expression is constantly increasing.
In contrast, VeloVAE fits the correct trends.

VeloVAE Detects Transcriptional Boosts. A recent re-
view (Bergen et al., 2021) showed that current RNA veloc-
ity approaches cannot account for “transcriptional boosts”.
These occur when the transcription rate rapidly increases
over time, making u(t) and s(t) concave upward. This con-
founds the assumptions of the simple ODE model, leading
to a time estimate that is backward. However, as shown in
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Figure 4: Comparison of Inferred Time and Fit (a)-(c) UMAP plots of scRNA data colored by capture time (left column),
scVelo global time (middle), and VeloVAE time (right) for ET (a), DG2 (b), and MB2 (c) datasets. (d)-(e) Fitted (lines) and
real (points) values from scVelo and VeloVAE for Hba-x gene in ET dataset and Dcx gene in MB2 dataset. Colors indicate
cell types. Note that the VeloVAE fits are actually a point cloud, not a line (see inset plots in Fig. 5); the fit is so accurate
that it would hide the real points, so we summarize the fit with a separate LOESS smooth per cell type to avoid overplotting.
VeloVAE correctly models transcriptional boosts (d) and bifurcating gene expression trends (e). Arrows in the bottom row
of plots indicate predicted future cell states from RNA velocity estimates. Cells are randomly subsampled for clarity.

Figure 5: VeloVAE Correctly Models Early Repression
and Late Induction. Fitted (lines) and real (points) values
from scVelo and VeloVAE for the Smoc1 (early repression)
and Gng12 (late induction, branching dynamics) genes in
the PE dataset. Colors indicate cell types. Note that the
VeloVAE fits are actually a point cloud, not a line; the fit is so
accurate that it would hide the real points, so we summarize
the fit with a separate LOESS smooth per cell type to avoid
overplotting. The inset plots show the complete point clouds
predicted by VeloVAE.

Fig. 4d, VeloVAE is able to accurately model such genes
because the ρ parameter varies by cell.

VeloVAE Models Cell Type Bifurcations. In most scRNA
datasets (including 5 we analyzed here), a single progenitor

type produces multiple cell types. A single ODE with a
constant transcription rate cannot model time-varying ki-
netics, including bifurcation. Thus, neither scVelo nor our
basic model can accurately model cell type bifurcations.
However, VeloVAE flexibly models the emergence of cell-
type-specific kinetics. For example, VeloVAE models the
three-way branching expression pattern of Gng12, which
diverges as alpha, beta, and delta cells are formed (Fig. 5).
Similarly, VeloVAE models branching Dcx expression in
neurons and oligodendrocytes (Fig. 4e). In contrast, scVelo
rearranges gene-specific latent time to force the cells onto
a single trajectory, erasing the cell-type-specific kinetics.
A 2D visualization of RNA velocity for all genes in the
PE dataset (Fig. 6) confirms that VeloVAE better predicts
branches leading to alpha, beta, delta, and epsilon cells.

a b

Figure 6: Visualization of RNA Velocity from PE
Dataset. 2D projection of RNA velocity vectors predicted
by scVelo (a) and VeloVAE (b). VeloVAE more accurately
predicts the branching dynamics to terminal cell types (al-
pha, beta, delta, and epsilon).

Cell states are meaningful representations of cell differ-



Variational Mixtures of ODEs for Inferring Cellular Gene Expression Dynamics

entiation. In section 3, we described the cell state as a
continuous representation of cell types. We validate this
claim by showing a 3D scatter plot of cell state versus time
(Fig. 7). For all six datasets, the cell state changes contin-
uously over time and extends to multiple branches at cell
type bifurcation points.

a b c

d e f

Figure 7: Cell State Evolution over Time. The vertical
axis is the latent time and the horizontal plane contains 2D
UMAP coordinates of c. (a) Pancreas (b) Dentate Gyrus
(c) 10x Mouse Brain (d) Erythroid (e) Dentate Gyrus 2 (f)
Whole Mouse Brain. Insets show UMAPs from original
expression data.

In addition, we note that the cell state models multiple
states at bifurcation. We do not infer a single decision point
in which a discrete cell fate decision occurs. Instead, we
model the emergence of cell types as a smooth transition
in which the cell state assignment has low uncertainty in
undifferentiated progenitors, high uncertainty when cell fate
decision is occurring, and low uncertainty again after the
fate decision. To measure the uncertainty, we picked uni-
and multi-variate coeffcient of variation (CV) (Van Valen,
1974) as our metric for uncertainty. For example, the CV of
c is the highest for ductal cells deciding between cell cycle
progression and exit to the Ngn3 progenitor state, as well as
for Ngn3 progenitors deciding among the alpha, beta, delta,
and epsilon fates (Figure 8).

Scalability. We think scalability is a key benefit of our
approach. Minibatch optimization enables memory usage
independent of cell number, whereas scVelo needs the en-
tire dataset in memory. Number of iterations required by
VeloVAE should also increase sublinearly with number of
cells. As a rough benchmark, we trained our model for 600
epochs with an NVIDIA Tesla V100 GPU and ran scVelo
on a single core of a 2.4 GHz Intel Xeon Gold 6148 CPU.
We have not yet optimized our implementation for runtime
or memory efficiency, and 600 epochs is likely overkill for
large datasets. But we are already at least as fast as scVelo

a b

Figure 8: Cell Time and State Uncertainty of the Pan-
creas Dataset. We used CV as a measure of cell time and
state uncertainty. The values are log-transformed for better
visualization.

and 600 epochs on the whole mouse brain dataset took about
5 hours (Figure 9).

Figure 9: Run-Time Comparison.

5. Discussion
In this work, we developed VeloVAE, a deep generative
model for inferring cellular gene expression dynamics. We
demonstrated that VeloVAE can infer meaningful cell times
while also fitting a model of gene expression dynamics.
VeloVAE achieved much better performance than the state-
of-the-art method, scVelo, on multiple scRNA-seq datasets.

Our principled probabilistic framework provides a strong
foundation for future extensions. The current model as-
sumes that genes are conditionally independent given both
time and cell state. Relaxing this conditional independence
assumption to infer groups of co-regulated genes is an excit-
ing future direction. Another possible direction is modeling
u and s as integer counts rather than normalized continuous
variables.

Our approach can be interpreted in several intuitive ways.
From one perspective, we constrain the joint distribution of
u(t) and s(t) to reflect our prior knowledge of the data gen-
erating process. From another point of view, our approach
is a variational autoencoder modified so that the latent vari-
ables learned by the encoder have clear biological meanings
(cell time and cell state) by construction. Another inter-
pretation is that knowing any two of three quantities–time,
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observations, and underlying dynamics–enables inference
of the third. Many previous papers have shown how to infer
dynamics when time and observations are known; we show
that having observations and general knowledge about how
they are generated allows recovery of unknown times.
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oni, J. C., and Göttgens, B. A single-cell molecu-
lar map of mouse gastrulation and early organogene-
sis. Nature, 566(7745):490–495, 2019. ISSN 1476-
4687. doi: 10.1038/s41586-019-0933-9. URL https:
//doi.org/10.1038/s41586-019-0933-9.

Plass, M., Solana, J., Wolf, F. A., Ayoub, S., Misios,
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A. Expectation-Maximization is Intractable When Cell Time is Shared Across Genes
Gene-Shared Latent Times. It is shown in scVelo (Bergen et al., 2020) that given the u and s values of a single gene, cell
time can be inferred using an EM algorithm. However, their approach results in different cell times for different genes.
Instead, we would like to develop an EM algorithm to infer the unique cell time, which is shared across all genes. We
denote time as t and the ODE parameters as θ. Following the standard EM algorithm, we obtain the E-step at the (j + 1)-th
iteration:

L(θ;θ(j)) = Ep(t|X;θ(j)) [ln p(X|t;θ)]

=

N∑
i=1

Ep(t(i)|x(i);θ(j))

[
ln p(x(i)|t(i);θ)

]
Here, we make the assumption that ti and xi (i = 1, 2, . . . , N ) are mutually independent. First, without computing the exact
form, we can show that the posterior is intractable.

p(t|x;θ) = p(x|t;θ)p(t)∫ +∞
t′=−∞ p(x|t′;θ)p(t′)dt′

It’s natural to assume that the time prior p(t) is uniform in [0, T ]. However, VeloVAE assumes a Gaussian prior N (µ0, σ
2
0)

because the support of a uniform distribution is not R and the KL divergence might be undefined in some cases. For the
purpose of analysis, we choose the uniform prior here. Later in the case of unshared latent time, we will see that with certain
approximations, using a uniform prior results in the same algorithm as scVelo.

In addition, we assume the covariance matrix of u and s of all genes is diagonal, i.e. Σ =
diag(σu,1, . . . , σu,G, σs,1, . . . , σs,G). Since p(x|t′;θ) is Gaussian, we have

p(t|x;θ) =
1

(2π)G|Σ|
1
2
e−d(t)

2 · 1
T I{t∈[0,T ]}∫ +∞

t′=−∞
1

(2π)G|Σ|
1
2
e−d(t′)2 · 1

T I{t′∈[0,T ]}dt′
=
e−d(t)

2

I{t∈[0,T ]}∫ T
t′=0

e−d(t′)2dt′
(6)

where d(t)2 :=

G∑
g=1

1

2σ2
u,g

(ug − ûg(t))2 +
1

2σ2
s,g

(sg − ŝg(t))2 (7)

Now consider the integral in the denominator. We know that both û(t) and ŝ(t) have at least one exponential term involving
t. Without exact calculation, we know that the denominator will involve the integral of exp(exp(−ct)) with some constant c
and this cannot be expressed by any elementary function. Let C(θ) be the constant equal to the integral in the denominator.
Therefore, the total likelihood function is

L(θ;θ(j)) =

N∑
i=1

∫
t

e−d(t
(i);θ(j))

2

C(i)(θ(j))

[
−G ln(2π)− 1

2
ln(|Σ|)− d(t(i);θ)2

]
Because C(i)(θ(j)) is intractable, it’s hard to directly optimize the total likelihood function. Hence, the EM algorithm
cannot be easily applied.

In addition, if we pick a Gaussian prior, we would end up with the same result with slight difference in the form of d(t):

d(t)2 :=
(t− t0)2

2σ2
0

+

G∑
g=1

1

2σ2
u,g

(ug − ûg(t))2 +
1

2σ2
s,g

(sg − ŝg(t))2

Unshared Latent Times. Now let’s consider the special case of G = 1, which is just the local gene fitting in scVelo. The
M-step in scVelo (Bergen et al., 2020) is simply to minimize the sample mean square error:

θ(j+1) = argmin
θ

1

N

N∑
i=1

[(
u(i) − û(i)(t)

)2
+
(
s(i) − ŝ(i)(t)

)2]
(8)

where û, ŝ are predictions by the learned kinetic function of the gene. First, we need to assume C(i)(θ(j)) is a constant for



Variational Mixtures of ODEs for Inferring Cellular Gene Expression Dynamics

all i. With this approximation, the M-step becomes
max
θ
L(θ;θ(j))

=max
θ

N∑
i=1

∫ T

t(i)=0

e−d(t
(i);θ(j))

2

C(i)(θ(j))

[
−cσ − d(t(i);θ)2

]
dt(i)

=min
θ

N∑
i=1

∫ T

t(i)=0

e−d(t
(i);θ(j))2

C(i)(θ(j))
d(t(i);θ)2dt(i) (9)

≈min
θ

1

C(θ(j))

N∑
i=1

∫ T

t(i)=0

d(t(i);θ)2e−d(t
(i);θ(j))

2

dt(i) (10)

We further assume σu = σs = σ, so d(t)2 = 1
2σ2

[
(u− û(t))2 + (s− ŝ(t))2

]
. We assume that σ ≈ 0 and d(t;θ) has a

global minimum t0 ∈ [0, T ]. As σ approaches 0, d(t;θ(j)) approaches infinity. Following the analysis by Li et al. (2020),
we apply the Laplace’s method to approximate the integral:∫ T

t(i)=0

d(t(i);θ)2e−d(t
(i);θ(j))

2

dt(i) ≈
√

2π

2d′′(t0;θ
(j))d(t0;θ

(j)) + 2d′(t0;θ
(j))2

e−d(t0;θ
(j))

2

d(t;θ)2 (11)

∝ d(t;θ)2 (12)
Using (10) and (12), we obtain the final result:

argmax
θ
L(θ;θ(j)) = argmin

θ

1

N

N∑
i=1

[(
u(i) − û(i)(t)

)2
+
(
s(i) − ŝ(i)(t)

)2]
Therefore, minimizing the mean square error is equivalent to maximizing the total likelihood function under all the
assumptions and approximations we made above.
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B. Test Datasets

Table 3: Dataset Description

DATASET NAME CELLS GENES CELL TYPES NO. TIME POINTS

PANCREATIC ENDOCRINOGENESIS (PE) 3696 2000 8 1
DENTATE GYRUS (DG1) 2930 800 14 1
10X MOUSE BRAIN (MB1) 3365 1000 7 1
ERYTHROID (ET) 9815 1000 5 7
DENTATE GYRUS (DG2) 18213 2000 14 2
MOUSE BRAIN DEVELOPMENT (MB2)* 29994 1000 10 20

*Subsampled to 30,000 cells

C. Other Test Results

Table 4: Performance on scRNA-seq Datasets. The metrics we compared, from left to right, are (1) Training and Testing
Mean Squared Error; (2) Training and Testing Mean Absolute Error; and (3) Log Likelihood. Test metrics are not reported
for scVelo because the method does not allow out-of-sample prediction.

DATASET METHOD MSE (TRAIN, TEST) MAE (TRAIN, TEST) LL (TRAIN, TEST)

SCVELO 2.107, N/A 0.423, N/A -1702, N/A
PE BASIC MODEL 6.815, 5.163 0.356, 0.351 271.71, 274.68

VELOVAE 0.823, 0.616 0.191,0.192 727.42, 717.20

SCVELO 0.670, N/A 0.316, N/A -2287, N/A
DG1 BASIC MODEL 0.574, 0.560 0.302, 0.304 41.43, 41.96

VELOVAE 0.243, 0.253 0.190, 0.194 237.63, 234.57

SCVELO 10.160, N/A 0.947, N/A -1779, N/A
MB1 BASIC MODEL 10.431, 10.254 0.916, 0.921 -456.07, -498.74

VELOVAE 1.886, 1.942 0.392, 0.398 440.61, 440.65

SCVELO 0.873,N/A 0.456, N/A -809.3, N/A
ET BASIC MODEL 0.246,0.246 0.251, 0.151 42.83, 44.25

VELOVAE 0.151,0.161 0.194, 0.196 67.36, 66.88

SCVELO 1.385, N/A 0.366, N/A -3513, N/A
DG2 BASIC MODEL 0.968, 0.970 0.294, 0.295 954.74, 950.64

VELOVAE 0.159, 0.163 0.120, 0.121 1797.30, 1791.32

SCVELO 18.19, N/A 0.47, N/A -7258, N/A
MB2 BASIC MODEL 2.295, 2.440 0.359, 0.364 -328.16, -338.89

VELOVAE 0.152, 0.147 0.089, 0.091 926.98, 924.48


