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The computational complexity of neural networks (NNs) continues to increase, spurring
the development of high-efficiency neural accelerator engines. Previous neural engines
have relied on two’s-complement (2C) arithmetic for their central MAC units (Fig. 29.3.1
top, left). However, gate-level simulations show that sign-magnitude (SM) multiplication
is significantly more energy efficient; ranging from 35% (with uniformly distributed
operands) to 67% (with normally distributed operands (u=0, 0=25)). The drawback of
sign-magnitude number representation is that SM addition incurs significant overhead
in terms of energy consumption and area, requiring upfront comparison of the sign bits
and muxing/control to appropriately select between addition and subtraction (Fig. 29.3.1
center, left). This SM addition overhead substantially offsets the gains from SM
multiplication in general purpose computing. One recent effort [1] to employ SM
§ representation in neural computation achieved modest energy improvement at the cost
15 of 2.5x area increase due to full duplication of the MAC units, which would typically be
§ unacceptable for area-/cost-sensitive loT applications.

o

8 This paper experimentally demonstrates that neural engines provide a unique opportunity
mto leverage the efficiency of SM multiplication by performing an inner-product using
e © unsigned dual adder trees to lower the overhead of SM additions. We propose an SM
S inner-product unit (IPU) that can be applied to accelerate convolutional, fully-connected,
§and transformer neural architectures. The idea can be applied orthogonally with other
Syenergy improvement techniques in most NN accelerators to further increase energy
S efficiency. The IPU performs eight multiplications in parallel and sums their results using
S two unsigned adder trees that combine their two results with a subtractor at their root.
T In this fashion, SM addition overhead is deferred to the root of the adder trees and
Qincurred only once for the entire inner-product computation (Fig. 29.3.1, center right).
—Further the SM IPU benefits from the reduced bit-switching activity of both neural
-uwelghts and activations when represented as SM numbers since their values are
o concentrated near zero with fewer non-zero bits in the magnitude field. Finally, the SM
§IPU performs intentional bit sparsification, which can be efficiently implemented in SM
© representation, reducing energy consumption by an additional 16% with a very minor
8 loss (~0.29%) in inference top-1 error rate.

i

m

%The proposed SM inner-product unit was implemented in a neural engine (NE) using a
gsystolic-array architecture with zig-zag input activation scanning and a weight circular
& buffer in 28nm CMOS and compared with an identical 2C companion implementation.
oThe SM implementation achieves 50% energy efficiency improvement with 14% area
<r increase compared to its 2C counterpart, with 8.09TOPS/W peak efficiency at 0.65V.

o Flgure 29.3.2 provides an overview of the test chip containing two NEs: an SM NE and a
d X 2C NE. The two NEs operate with independent power domains and clocks, each
_contammg a 4.3Mb global memory (MEM). Each NE consists of four processing lanes;
Tasingle lane has 3x8 processing elements (PEs). Each PE contains an (SM or 2C) inner-
2 product unit and a register file for temporary accumulated data. The SM IPU consists of
= eight SM multipliers and two 8-input unsigned adder trees (one for positive and the other
¢ for negative additions only), whereas the 2C IPU has a single 8-input adder tree that
gaccumulates 2C-represented signed numbers. The PE array is structured to form an
“g output-stationary systolic array where PE data propagates only from the west and north.
© The accumulated (convolution or matrix multiplication) values are bit-shifted (scaled)
‘5 by a post-processing unit (PPU), which also performs ReLU, and bit sparsification (for
£ SM NE). The NE controller controls the datapath to support general convolution and fully
o connected layers with configurable parameters.

State C

« The SM inner-product unit exhibits excellent energy efficiency for a general NN workload.
S The 8b SM multiplier has 35% lower energy consumption than the 8b 2C multiplier when
— operands are uniformly distributed. This observed gain is mainly due to differences in
& the bit-toggle activity per operation (Fig. 29.3.3). Furthermore, it is well known that NN
g ‘& weights and activations typically have non-uniform distributions with high occurrences
QJof small or zero values [2]. This fact further improves the energy efficiency of SM
E multipliers relative to 2C multipliers, which do not fully exploit these distributions since
Ethe sign change of a small value requires toggling most bits in a 2C representation. Post-
= synthesis gate-level simulations in Fig. 29.3.3 show that an 8-length SM IPU has 20-57%
S lower energy consumption than a 2C counterpart when input operands follow a zero-
“'mean Gaussian distribution with standard deviations (o) ranging from 127-16 for 8b
fixed point SM or 2C operands.
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Extending the structured sparsity concept to the number representation system, we
propose a reconfigurable bit-sparsification technique to maximize the benefit of the SM
IPU (Fig. 29.3.4). The scheme constrains the number of non-zero bits (NZB, excluding
sign bit) in the magnitude of SM-represented weights and activations to reduce bit-toggle
activity during computation, with relatively low quantization loss. The NZB parameter for
bit-sparsification can be dynamically configured for each NN layer. To minimize accuracy
degradation, each NN model is re-trained after imposing the bit-sparse quantization
constraint on weights and activations. Fig. 29.3.4 (bottom right) shows that a popular
NN (VGG-nagadomi [3]) exhibits only 0.29% TOP-1 error rate degradation for NZB=2
(or 1.16% for NZB=1). Considering the small overhead of on-the-fly bit-sparsification
for activations, the technique reduces energy by 31% and 16% with NZB=1 and 2,
respectively, compared to the original SM inner-product unit. The SM NE employs a
configurable bit sparsifier implemented in the PPU to enable bit sparse quantization for
activations with a layer-dependent reconfigurable (1-3, and 7) NZB. In the bit sparsifier
(Fig. 29.3.4 top right), three fixed priority encoders are cascaded via an intermediate OR-
chain working as a mask for the next encoder. The configurable bit sparsifier comprises
< 0.05% of the SM inner-product unit area with negligible energy overhead since it is
performed only once at the final activation output (weights are loaded in bit-sparsified
form).

In the output-stationary systolic array, each output activation is sequentially updated in
the horizontal dimension fully utilizing PEs that locally share/propagate data (Fig. 29.3.5).
In this manner, input activations and weights are accessed from buffer memories in a
predefined zig-zag order, which is implemented using three address pointers incremented
by reconfigurable strides. Each activation is reused in the next PE column. For each
convolution kernel, weights are read only once from the main memory and loaded to a
weight circular buffer, which feeds necessary weights to all PEs until convolution
completes. The NE can utilize PEs at 99.7% for 3x3 convolution layers with multiple
(e.g., 256 input and 8 output) channels, while the PE utilization ratio is 33.3% for 1x1
convolution kernels and fully-connected layers.

Figures 29.3.5 (bottom) and 29.3.6 (top) show measurement results of the 28nm test
chip. SM and 2C NE energy efficiencies are measured using uniformly or Gaussian-
distributed random operands. The 2C NE does not benefit from operand distribution
changes except when 50% zero activations are used (modeling ReLU function). On the
other hand, SM NE energy efficiency is higher than 2C NE and it improves by 1.5x as
the distribution changes towards lower o and additional zeros. With NZB=2b-
sparsification, the SM NE exhibits 50% higher energy efficiency than 2C NE when 6=25
with replacing negative values by zero (modeling ReLU function). A trained VGG-
nagadomi NN was demonstrated on the fabricated NEs. The SM NE and bit-sparsification
technique improve energy efficiency at each of the 8 VGG layers. Bit-sparsification
provides larger improvements in layers having higher o. Using NZB=2b-sparsification,
the SM NE increases energy efficiency by 15-34% compared to the 2C NE and achieves
3-8TOPS/W depending on the layer characteristics.

The table in Fig. 29.3.6 compares the demonstrated SM NE and 2C NE to other state-of-
the-art neural accelerators. The SM inner product unit with dual adder tree and
bit-sparsified operation is orthogonal to most other NN acceleration techniques and can
be implemented in other NN accelerators with small area overhead and negligible
algorithm accuracy degradation. It is effective at reducing energy consumption of NN
computation and can be applied to convolutional, fully-connected, and transformer neural
architectures.

Acknowledgement:
The authors would like to thank Taiwan Semiconductor Manufacturing Company and
Sony Semiconductor Solutions Corp./Sony Electronics Inc. for supporting this work.

References:

[1] P Whatmough et al., “A 28nm SoC with a 1.2GHz 568nJ/Prediction Sparse Deep-
Neural-Network Engine with >0.1 Timing Error Rate Tolerance for loT Applications,”
ISSCC, pp. 242-243, 2017.

[2] S. Han, H. Mao and W. J. Dally, “Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding,” arXiv preprint
arXiv:1510.00149, 2015.

[3] Nagadomi, “Code for Kaggle-CIFAR10 Competition, 5th Place,”
https://github.com/nagadomi/kaggle-cifar10-torch7, 2014.

[4] S. Ryu et al., “BitBlade: Energy-Efficient Variable Bit-Precision Hardware Accelerator
for Quantized Neural Networks,” /EEE JSSC, vol. 57, no. 6, pp. 1924-1935, 2022.

[5] C.-H. Lin et al., “A 3.4-to-13.3TOPS/W 3.6TOPS Dual-Core Deep-Learning Accelerator
for Versatile Al Applications in 7nm 5G Smartphone SoC”, ISSCC, pp. 134-135, 2020.

978-1-6654-9016-0/23/$31.00 ©2023 |EEE



ISSCC

2023 / February 22, 2023 / 2:30 PM

MAC-based Inner-product unit Adder tree-based Inner-product unit
€
< Conventional Conventional
g 2C MAC 2C Adder Tree
= o Flexibility (+) o Flexibility (=)
£ :@@ o Enegy o Energy |,
© . Efficiency Efficiency
.g < o Area (=) o Area (+4)
3 Efficiency Efficiency
=
SM Adder SM Dual Adder Tree
@ [This work]
]
= o Flexibility (=)
5 o Energy
= Efficiency
= o Area
2 Efficiency )
w
Energy consumption of Inner-product unit Area & Latency of Inner-product unit
= 0 @8b Mult D16b+ Adder [ 32bReg — @8b Mult O16b+ Adder [ 32bReg »
2 £ 2000 163
5% 3 3
g £ 122
® 20 2 3
B & 1000 08 =
S0 £ 3
2 = 04 g
1] @ 2
0.0 0

2C 2C SM Dual SM Dual AT
MAC A AT NzB=2

Normal distribution workload (=0, 0=25)

MAC
Gatedevel simuaion on TsC 28 HPCP STibay @250 T | Figure 29.3.2: Architecture of the test chip with two neural engines: SM NE, and 2C

SM Dual

B 2
ts‘::cJeSt ?:;_lp \fllth f / 44 Weight circular buffer
i N t_e”I’a :_?mtes o, T .
Identical architecture / LANE
] SM PE PE PE
5 | Neural
<| Engine Global
e T [
\ 4.3Mbit 8
ol 2 £ 4 Injout 8l
serial I | [ seria =| Neural | | Buffer
erial i g 2| Engine | |\ £
\ k4
\ £
x PE PE
ool 3| midwid
| \ | 0a 8x8b.._ [0a 8x8b 0a 8x8b)
el Post Process Unit
Egng = iSC, _ 4 — Y [[cTrL =
e 2 =
Negative number adder tree PE
8b SM multiplier
wolI7:0) 7] » sign(0)
i&[O[7:0] E YI7T
X[6:0) mO[130], Accumulator
VE0] & hd
wl][7:0] 1]113:0]
%E}: 8 SM multplier | k20
ial1)[7:0]
(U Datagating

8b SM multiplier

0][7:0]
a0l o)

Positive number adder tree

WITIZ0] E
O]
muinndsﬂ.

Figure 29.3.1: Comparison of the inner-product units (IPUs). (Bottom) Simulated NE. (Bottom) The PE architecture of SM NE. The PE of 2C NE contains 8b 2C
energy, area, and latency comparison of three different IPUs.
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Figure 29.3.5: (Top) Output-stationary systolic array architecture. (Bottom) Measured Figure 29.3.6: (Top) Measured energy consumption of VGG-nagadomi. (Bottom)

NE energy efficiency on various random workloads.
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Figure 29.3.7: Die photo.
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