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The computational complexity of neural networks (NNs) continues to increase, spurring 
the development of high-efficiency neural accelerator engines. Previous neural engines 
have relied on two’s-complement (2C) arithmetic for their central MAC units (Fig. 29.3.1 
top, left). However, gate-level simulations show that sign-magnitude (SM) multiplication 
is significantly more energy efficient; ranging from 35% (with uniformly distributed 
operands) to 67% (with normally distributed operands (μ=0, σ=25)). The drawback of 
sign-magnitude number representation is that SM addition incurs significant overhead 
in terms of energy consumption and area, requiring upfront comparison of the sign bits 
and muxing/control to appropriately select between addition and subtraction (Fig. 29.3.1 
center, left). This SM addition overhead substantially offsets the gains from SM 
multiplication in general purpose computing. One recent effort [1] to employ SM 
representation in neural computation achieved modest energy improvement at the cost 
of 2.5× area increase due to full duplication of the MAC units, which would typically be 
unacceptable for area-/cost-sensitive IoT applications.  
 
This paper experimentally demonstrates that neural engines provide a unique opportunity 
to leverage the efficiency of SM multiplication by performing an inner-product using 
unsigned dual adder trees to lower the overhead of SM additions. We propose an SM 
inner-product unit (IPU) that can be applied to accelerate convolutional, fully-connected, 
and transformer neural architectures. The idea can be applied orthogonally with other 
energy improvement techniques in most NN accelerators to further increase energy 
efficiency. The IPU performs eight multiplications in parallel and sums their results using 
two unsigned adder trees that combine their two results with a subtractor at their root. 
In this fashion, SM addition overhead is deferred to the root of the adder trees and 
incurred only once for the entire inner-product computation (Fig. 29.3.1, center right). 
Further, the SM IPU benefits from the reduced bit-switching activity of both neural 
weights and activations when represented as SM numbers since their values are 
concentrated near zero with fewer non-zero bits in the magnitude field. Finally, the SM 
IPU performs intentional bit sparsification, which can be efficiently implemented in SM 
representation, reducing energy consumption by an additional 16% with a very minor 
loss (~0.29%) in inference top-1 error rate. 
 
The proposed SM inner-product unit was implemented in a neural engine (NE) using a 
systolic-array architecture with zig-zag input activation scanning and a weight circular 
buffer in 28nm CMOS and compared with an identical 2C companion implementation. 
The SM implementation achieves 50% energy efficiency improvement with 14% area 
increase compared to its 2C counterpart, with 8.09TOPS/W peak efficiency at 0.65V. 
 
Figure 29.3.2 provides an overview of the test chip containing two NEs: an SM NE and a 
2C NE. The two NEs operate with independent power domains and clocks, each 
containing a 4.3Mb global memory (MEM). Each NE consists of four processing lanes; 
a single lane has 3×8 processing elements (PEs). Each PE contains an (SM or 2C) inner-
product unit and a register file for temporary accumulated data. The SM IPU consists of 
eight SM multipliers and two 8-input unsigned adder trees (one for positive and the other 
for negative additions only), whereas the 2C IPU has a single 8-input adder tree that 
accumulates 2C-represented signed numbers. The PE array is structured to form an 
output-stationary systolic array where PE data propagates only from the west and north. 
The accumulated (convolution or matrix multiplication) values are bit-shifted (scaled) 
by a post-processing unit (PPU), which also performs ReLU, and bit sparsification (for 
SM NE). The NE controller controls the datapath to support general convolution and fully 
connected layers with configurable parameters.  
 
The SM inner-product unit exhibits excellent energy efficiency for a general NN workload. 
The 8b SM multiplier has 35% lower energy consumption than the 8b 2C multiplier when 
operands are uniformly distributed. This observed gain is mainly due to differences in 
the bit-toggle activity per operation (Fig. 29.3.3). Furthermore, it is well known that NN 
weights and activations typically have non-uniform distributions with high occurrences 
of small or zero values [2]. This fact further improves the energy efficiency of SM 
multipliers relative to 2C multipliers, which do not fully exploit these distributions since 
the sign change of a small value requires toggling most bits in a 2C representation. Post-
synthesis gate-level simulations in Fig. 29.3.3 show that an 8-length SM IPU has 20-57% 
lower energy consumption than a 2C counterpart when input operands follow a zero-
mean Gaussian distribution with standard deviations (σ) ranging from 127-16 for 8b 
fixed point SM or 2C operands. 
 

Extending the structured sparsity concept to the number representation system, we 
propose a reconfigurable bit-sparsification technique to maximize the benefit of the SM 
IPU (Fig. 29.3.4). The scheme constrains the number of non-zero bits (NZB, excluding 
sign bit) in the magnitude of SM-represented weights and activations to reduce bit-toggle 
activity during computation, with relatively low quantization loss. The NZB parameter for 
bit-sparsification can be dynamically configured for each NN layer. To minimize accuracy 
degradation, each NN model is re-trained after imposing the bit-sparse quantization 
constraint on weights and activations. Fig. 29.3.4 (bottom right) shows that a popular 
NN (VGG-nagadomi [3]) exhibits only 0.29% TOP-1 error rate degradation for NZB=2 
(or 1.16% for NZB=1). Considering the small overhead of on-the-fly bit-sparsification 
for activations, the technique reduces energy by 31% and 16% with NZB=1 and 2, 
respectively, compared to the original SM inner-product unit. The SM NE employs a 
configurable bit sparsifier implemented in the PPU to enable bit sparse quantization for 
activations with a layer-dependent reconfigurable (1–3, and 7) NZB. In the bit sparsifier 
(Fig. 29.3.4 top right), three fixed priority encoders are cascaded via an intermediate OR-
chain working as a mask for the next encoder. The configurable bit sparsifier comprises 
< 0.05% of the SM inner-product unit area with negligible energy overhead since it is 
performed only once at the final activation output (weights are loaded in bit-sparsified 
form). 
 
In the output-stationary systolic array, each output activation is sequentially updated in 
the horizontal dimension fully utilizing PEs that locally share/propagate data (Fig. 29.3.5). 
In this manner, input activations and weights are accessed from buffer memories in a 
predefined zig-zag order, which is implemented using three address pointers incremented 
by reconfigurable strides. Each activation is reused in the next PE column. For each 
convolution kernel, weights are read only once from the main memory and loaded to a 
weight circular buffer, which feeds necessary weights to all PEs until convolution 
completes. The NE can utilize PEs at 99.7% for 3×3 convolution layers with multiple 
(e.g., 256 input and 8 output) channels, while the PE utilization ratio is 33.3% for 1×1 
convolution kernels and fully-connected layers. 
 
Figures 29.3.5 (bottom) and 29.3.6 (top) show measurement results of the 28nm test 
chip. SM and 2C NE energy efficiencies are measured using uniformly or Gaussian-
distributed random operands. The 2C NE does not benefit from operand distribution 
changes except when 50% zero activations are used (modeling ReLU function). On the 
other hand, SM NE energy efficiency is higher than 2C NE and it improves by 1.5× as 
the distribution changes towards lower σ and additional zeros.  With NZB=2b-
sparsification, the SM NE exhibits 50% higher energy efficiency than 2C NE when σ=25 
with replacing negative values by zero (modeling ReLU function). A trained VGG-
nagadomi NN was demonstrated on the fabricated NEs. The SM NE and bit-sparsification 
technique improve energy efficiency at each of the 8 VGG layers. Bit-sparsification 
provides larger improvements in layers having higher σ. Using NZB=2b-sparsification, 
the SM NE increases energy efficiency by 15-34% compared to the 2C NE and achieves 
3-8TOPS/W depending on the layer characteristics. 
 
The table in Fig. 29.3.6 compares the demonstrated SM NE and 2C NE to other state-of-
the-art neural accelerators. The SM inner product unit with dual adder tree and 
bit-sparsified operation is orthogonal to most other NN acceleration techniques and can 
be implemented in other NN accelerators with small area overhead and negligible 
algorithm accuracy degradation. It is effective at reducing energy consumption of NN 
computation and can be applied to convolutional, fully-connected, and transformer neural 
architectures. 
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Figure 29.3.1: Comparison of the inner-product units (IPUs). (Bottom) Simulated 
energy, area, and latency comparison of three different IPUs.

Figure 29.3.2: Architecture of the test chip with two neural engines: SM NE, and 2C 
NE. (Bottom) The PE architecture of SM NE. The PE of 2C NE contains 8b 2C 
multipliers and a conventional 2C adder tree.

Figure 29.3.3: Comparison of arithmetic in SM and 2C. (Top, left) Toggle activity 
heat maps of SM and 2C multipliers. (Top, right) Weight distribution of the 
convolution kernel of the VGG-nagadomi. (Bottom) Energy consumption comparison 
of the IPUs.

Figure 29.3.4: Proposed reconfigurable bit-sparsification. (Top, left) Bit sparse SM 
representation. (Top, right) Configurable bit sparsifier. (Bottom, left) Bit-sparse SM 
model training scheme. (Bottom, right) Energy consumption with bit-sparsification 
scheme.

Figure 29.3.5: (Top) Output-stationary systolic array architecture. (Bottom) Measured 
NE energy efficiency on various random workloads.

Figure 29.3.6: (Top) Measured energy consumption of VGG-nagadomi. (Bottom) 
Comparison table.
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Figure 29.3.7: Die photo.
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