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Keyword spotting (KWS) has become essential as a wake-up mechanism for edge IoT 
devices. While recent advances in deep learning have improved KWS accuracy [1], 
reducing system power consumption remains a challenge. A typical KWS signal chain 
consists of an analog frontend (AFE), feature extractor (FE), and neural network classifier 
(NN). To reduce total KWS power, all three blocks must be carefully co-optimized. Recent 
KWS work reported 0.51μW consumption for the FE and NN, but it only supports two 
keywords and lacks an AFE, whose power often dominates [2]. A KWS system including 
an AFE was also proposed but consumes 16μW [3]. This work proposes a fully integrated 
keyword spotting system that employs the skip RNN algorithm [4] to simultaneously 
reduce the power consumption of the AFE, FE, and NN by adaptively sub-sampling (i.e., 
skipping) input frames based on the signal content. The skip RNN continually decides 
whether the RNN state is to be updated or skipped for one or more 16ms-long frames 
based on its input content history, reducing NN operation and hence power. We further 
propose a scheme to use the NN skip decision to dynamically turn off the AFE and FE, 
which dominate the KWS power (combined >65%) for one or more consecutive frames, 
achieving 3× power reduction. The proposed AFE features a programmable switched 
capacitor resistor and two-step switching frequency control, demonstrating less than 
1ms settling time. The FE and NN employ computational sprinting with efficient 
scheduling to reduce their operation time and static current. The proposed KWS system 
consumes 1.5μW (reduced from 4.47μW with an average of 76% frame skipping) in 
28nm CMOS, while achieving 92.8% accuracy on five-word GSCD KWS. 
 
Figure 29.6.1 (top) shows the operating principle of the proposed KWS system. The AFE 
generates an audio frame (16ms) from the input audio waveform, which is then converted 
by the FE into a log-Mel feature vector, fed to the RNN. Unlike a conventional RNN, where 
every incoming frame is processed and updates its state, the skip RNN is augmented 
with a skip policy module that adaptively determines whether the RNN state is updated 
or skipped. The skip policy module also produces an NSKIP indicating how many frames 
to skip. The skip RNN is end-to-end trained with the skip policy module by having it 
observe a sequence of frames to simultaneously learn both keyword classification and 
skip control. Following a decision from the skip policy module, we power down the 
system including the AFE and FE for NSKIP frames. Power down is controlled by the skip 
control FSM, which is always on. Fig. 29.6.1 (middle) shows the overall block diagram 
of the proposed KWS system, comprised of an AFE, FE, NN, and skip control FSM. The 
skip control FSM provides power gate (PG) signals for each of the other three blocks, as 
well as each block’s clock, start, and isolation control signal. Fig. 29.6.1 (bottom) shows 
the detailed operation of the proposed system. KWS begins with PG_ONAFE that turn on 
the AFE PG, followed by STARTAFE to enable the AFE control logic (not shown). The FSM 
inserts a programmable timing margin (up to 250μs with 15.6μs step) between AFE 
PG_ON and START for proper supply stabilization. After the amplifier settling time (TSET), 
an ADC starts to sample the incoming signal. Upon conversion of one audio frame, the 
FE and the RNN process the data. The AFE therefore remains on for an additional TFE + 
TNN to avoid losing any data from the next frame while the RNN processes the current 
frame. When re-enabling the AFE after one or more skipped frame, the FSM pre-starts 
the AFE for TSET to settle it before the ADC is again enabled to digitize the new frame. In 
addition to TFRAME, the AFE also consumes power during TSET, TFE, and TNN, which 
represents an overhead (Fig. 29.6.2, top left). Therefore, to reduce AFE energy overhead, 
our design focuses on achieving fast settling time for the AFE, and short operation times 
for the FE and RNN. 
 
Figure 29.6.2 shows the proposed fast settling AFE. A capacitive feedback (CF) amplifier 
is attractive for its low power consumption, but has a high-pass corner (fHP) that is 
inherently low, resulting in a long settling time (e.g., 37ms when fHP=50Hz), which is 
comparable to TFRAME. We therefore designed the first stage LNA with a DC-coupled Gm-
ratio structure [5], while the second stage PGA uses a CF structure. Using a DC-coupled 
structure for the first stage reduces settling time by 54% due to its lack of a high-pass 
corner. To improve the settling time of the CF PGA, its fHP must be set as high as possible, 
without filtering out voice content that would degrade KWS accuracy. Based on software 
KWS simulations (Fig. 29.6.2, top), fHP can be increased to 140Hz (compared to a 
conventional value of <50Hz) but must be carefully controlled across PVT conditions to 
avoid inadvertent excursions into higher frequencies that would impact KWS accuracy. 
Traditionally, the corner in a CF amp is set using a “pseudo-resistor”, but its high PVT 
sensitivity (>10×) cannot achieve the required corner accuracy. Instead, we employ a 
switched capacitor resistor with equivalent resistance set by its capacitance and the 

switching clock (Φ0,1), which are insensitive to PVT. Further, we also adopt a two-step 
frequency control, where Φ0,1 operates momentarily at a higher frequency (FFAST) to 
achieve fast settling before switching to its final value (FNOM) as shown in Fig. 29.6.2 (top 
right), reducing the AFE settling time by 6×. TSET_FAST, TSET_NOM, and FFAST are 
programmable. By combining all techniques (Gm first stage, increased fHP, and two-step 
frequency control), settling time is reduced from 37 ms to <1 ms, yielding a 1.1μW 
average power reduction. The ADC is an 8b synchronous SAR architecture with 16kS/s 
sampling frequency. The amplifiers, the ADCs capacitor DAC, and the ADC comparator 
operate using 1.4V, while the AFE FSM and the SAR logic operate at 0.65V. When 
PG_ONAFE goes low, all AFE blocks except the capacitor DAC are power gated. Fig. 29.6.2 
(bottom right) details the measured AFE performance.  
 
The FE, shown in Fig. 29.6.3 (top), consists of windowing, FFT, Mel filter, and log units. 
A 16ms 256-point 8b non-overlapping audio frame is multiplied by the Hanning window 
and sent to the FFT module and further processed by power calculation, Mel filter, and 
log module to generate an 8b 26-dimension feature vector. Because the power-
dominating FFT must process non-consecutive frames, it cannot use a conventional 
pipelined architecture. We therefore employ a memory-based fully-folded structure with 
a single butterfly unit (BFLY, Fig. 29.6.3, bottom left). Instead of a single-bank dual-port 
SRAM, we use four banks of a single-port SRAM, which is simpler and smaller than a 
dual-port SRAM, reducing memory power by 80% [6]. One BFLY calculation requires 2 
cycles, where one additional cycle resamples the BFLY input data to reduce glitch power, 
saving 22% BFLY power. The architecture requires 1152 cycles to finish one FFT, and 
overlaps the window, FFT power, Mel, and log operations to reduce overall operating 
time. The FE sprints to complete its computation quickly (290μs) to reduce AFE power 
overhead and is then power gated to minimize its leakage power. The FE sprinting 
frequency is set at 4MHz, which marks the point of diminishing returns as seen in Fig. 
29.6.3 (bottom). 
 
The FE feeds the 26-dimension features to the 64 hidden nodes of the RNN. Each RNN 
cell is designed with a gated recurrent unit (GRU) (Fig. 29.6.4 bottom left). The 64 hidden 
states of the RNN are processed by the fully connected (FC) layer with eight output nodes. 
Seven of these FC nodes generate class outputs (5 keywords, one non-keywords, one 
noise). The last FC node produces the skip score for the skip policy module, which 
accumulates the skip score. When the accumulator overflows, it latches a counter to 
produce NSKIP (Fig. 29.6.4, top left). The RNN accelerator consists of a MAC array, 
WMEM, functional units (FU), register bank, and a NN FSM. The MAC array is designed 
with 64 parallel MACs. We adopt an output stationary dataflow for the MAC array, where 
the partial sums for the 64 GRU gate vectors are accumulated in the 64 MACs until the 
processing of each GRU gate vector is completed. For the FC layer, 8 MACs process the 
8 FC output nodes in parallel. All activations are scaled and quantized to 12b. The always-
on WMEM stores the 8b weights for the RNN model and is custom designed using 
latches with high Vth transistors, achieving 20× leakage power reduction compared to 
the foundry SRAM (Fig. 29.6.4 middle). After each frame, the RNN hidden states are 
stored in WMEM before the NN block is power gated. The operation of the MAC array, 
FU, and the register bank are scheduled to overlap their operations reducing a single 
frame processing time to 495 cycles (Fig. 29.6.4 bottom). The RNN sprints with a 1MHz 
clock to reduce the leakage power and optimize overall energy efficiency. 
 
The proposed chip is fabricated in 28nm CMOS (Fig. 29.6.7). We trained the model with 
different skip ratios and tested KWS accuracy (Fig. 29.6.5 top left), where the GCSD 
dataset with 5 keywords task is used for the training and testing. Skip ratio can be 
changed using a single hyperparameter of the loss function [4]. The tested accuracy 
drop is less than 1% at the skip ratio used for the deployed model (=0.76). Fig. 29.6.5 
(top right) compares the measured power consumption of each block of the proposed 
KWS system when the skip ratio is 0 and 0.76. Measured power reduces from 4.47μW 
to 1.48μW, achieving 3× power reduction. Fig. 29.6.5 (bottom left) shows the measured 
amplifier output and frame enable control for an example audio signal, showing the 
adaptive enable/skip pattern according to input data. Fig. 29.6.5 (bottom right) shows 
the measured dynamic power of the AFE, FE, and NN. Fig. 29.6.6 provides a comparison 
table of recently published KWS chips. The proposed design is the lowest power KWS 
system that fully integrates AFE, FE, and NN. 
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Figure 29.6.1: Conceptual block diagram and operation of proposed KWS system 
(top), detailed block diagram of proposed KWS SoC (middle), and detailed operation 
of proposed system (bottom).

Figure 29.6.2: Proposed fast settling AFE with switched capacitor resistor and two 
step switching frequency control.

Figure 29.6.3: Block diagram of proposed FE (top), detailed structure of FFT module 
(bottom left), timing diagram of FE operation (middle right), and simulated power 
reduction from sprinting and simulated power breakdown (bottom right).

Figure 29.6.4: Conceptual block diagram of proposed RNN accelerator (top left), 
detailed block diagram of RNN accelerator (top right), proposed latch cell-based 
WMEM (middle), and RNN scheduling table (bottom).

Figure 29.6.5: Measurement results of proposed KWS SoC. Figure 29.6.6: Comparison table with recently published KWS chips.
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Figure 29.6.7: Chip photograph.
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