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Abstract—Recent advances in model pruning have enabled
sparsity-aware deep neural network accelerators that improve
the energy-efficiency and performance of inference tasks. We in-
troduce SONA, a novel transform-domain neural network accel-
erator in which convolution operations are replaced by element-
wise multiplications with sparse-orthogonal weights. SONA em-
ploys an output stationary dataflow coupled with an energy-
efficient memory organization to reduce the overhead of sparse-
orthogonal transform-domain kernels that are concurrently pro-
cessed without any conflicts. Weights in SONA are non-uniformly
quantized with bit-sparse canonical-signed-digit representations
to reduce multiplications to simple additions. Moreover, for
sparse fully-connected layers (FCLs), SONA introduces column-
based-block structured pruning, which is integrated into the same
architecture that maintains full multiply-and-accumulate (MAC)
array utilization. Compared to prior dense and sparse neural
networks accelerators, SONA can reduce inference energy by
5.1× and 2.4× and increase performance by 5.2× and 2.1×,
respectively, for convolution layers. For sparse FCLs, SONA can
reduce inference energy by 2.4× and increase performance by
2× compared to prior work.

I. INTRODUCTION

Convolutional neural networks (CNNs) have become a

fundamental technique in machine learning tasks, but their

extension to low-cost and energy-constrained applications

is limited by CNN model sizes and complexity. Recently,

pruning methods aimed at reducing the number of non-zero

parameters have been proposed to decrease model size and

lower complexity [1], [2]. In turn, sparsity-aware accelerators

that directly leverage sparsity have been proposed [3]–[7] to

improve the energy-efficiency of inference tasks.

Another way to reduce complexity is via transform-domain

computations that replace convolution in CNNs with element-

wise multiplications. However, it is difficult to combine both

sparsity and transform-domain computations since transform-

domain models often do not allow aggressive weight pruning

as shown in [8], [9]. Moreover, the sparsity that these works

exploited was unstructured (random). Applying sparsity-aware

architectures to these transform-domain models with less ag-

gressive pruning can yield limited gains due to the unstructured

nature of sparsity which imposes significant overheads on ac-

celerator flexibility or results in reduced hardware utilization.

To overcome these challenges, a heterogeneous transform-

domain neural network (HTNN) [10] was proposed as a frame-

work to learn structured sparse-orthogonal weights where

convolutions are replaced by element-wise multiplications.

In an HTNN, two or more kernels in different transform
domains share a multiplier without conflict as the non-zero

weight positions are strictly orthogonal to each other. The

authors in [10] demonstrate various CNN workloads that can

be trained, pruned, and quantized in heterogeneous transform

domains while maintaining inference accuracy. However, the

expectation that HTNNs [10] can reduce computational com-

plexity compared to equivalent sparse CNNs has not been

demonstrated in hardware. Efficiently mapping HTNN models

to a hardware architecture in a way that maximizes observable

gain remains a significant challenge.
In this paper, we propose SONA, a novel energy-efficient

accelerator architecture for HTNNs. We propose an HTNN-

specific output stationary dataflow coupled with an energy-

efficient transform memory organization to reduce the over-

head of overlapped transform-domain convolution. The pro-

posed architecture demonstrates reconfigurable datapaths to

compute the permuted variants of the Walsh-Hadamard trans-

form (WHT) for concurrently executed transform-domain

kernels. Moreover, we extend the sparse-orthogonal weight

concept of HTNN to fully connected layers (FCLs) by propos-

ing a column-based-block (CBB) structured sparsity pattern.

Structured sparsity in FCLs allows SONA to share a unified
datapath between sparse convolution and sparse FCLs without
compromising MAC array utilization. Furthermore, HTNN
employs non-uniformly quantized bit-sparse canonical-signed-

digit (BS-CSD) weights. At the circuit level, SONA proposes

a novel BS-CSD-MAC unit (CMU) to replace multiplications

with bit-shifts and additions.
We evaluate SONA on CIFAR-10/100 and ImageNet and

compare performance and energy-efficiency against represen-

tative dense and sparse DNN accelerator designs. Compared

to prior dense and sparse CNN accelerators, SONA can reduce

inference energy by 5.1× and 2.4×, and increase performance
by 5.2× and 2.1×, respectively, for convolution layers. For

sparse FCLs, SONA can reduce inference energy by 2.4× and

increase performance by 2.1× compared to prior work. The

main contributions of this paper are:

• SONA, the first demonstration of an energy-efficient

hardware accelerator architecture for HTNNs with an

HTNN-specific output stationary dataflow coupled with

an energy-efficient memory organization.

• A CBB structured sparsity pattern for FCLs which

enables SONA to share the datapath between sparse
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Fig. 1. Comparison between HTNN WHT domain convolution layer and conventional CNN convolutional layer.

transform-domain convolution and sparse FCLs without

compromising MAC array utilization.

• A BS-CSD-MAC unit to replace multiplications with bit-

shifts/additions and concurrently process output channels.

• Evaluation of SONA against prior dense and sparse

DNN accelerators using a simulator as well as RTL

implementation on CIFAR-10/100 and ImageNet.

II. BACKGROUND

A. WHT-Domain Convolution

A CNN consists of a set of cascaded layers. We refer to

elements of a given layer’s input feature map as activations.

The input feature map is of size Nx × Ny × IC , where Nx

and Ny are the spatial dimensions and IC is the number of

input channels. We refer to the set of learnable parameters

in a given layer as weight kernels. The cardinality of this set

is OC , the layer’s number of output channels. Each weight

kernel is a Kx × Ky × IC tensor where Kx and Ky denote

the spatial dimensions. WHT [11] is a generalized class of

Fourier transforms given by a symmetric transform matrix H
that contains only binary values ±1. Although WHT-domain

convolution is generalizable to kernels of any size, we focus

on the case proposed in [10] where stride-1 3×3 convolutions
are replaced by stride-2 4×4 WHT-domain kernels given that

it is a very popular configuration in CNNs. Note that the 1×
1 point-wise convolution commonly used in MobileNetV1/2

[12] is identical in both HTNNs and CNNs.

As shown in Figure 1 (red), WHT-domain convolution is

based on 4×4 activation patches Xc
p for each input channel c

extracted from the input with a stride of 2×2. To calculate the
2×2 output channel Yp of a layer for patch position p, a 2D
4-point WHT is first applied to each channel in Xp to yield

3D output Tp. The 2D 4-point WHT is obtained by applying

the WHT HWHT matrix in (1) to the rows and then columns

of each channel Xc
p to yield Tc

p = HWHT
TXc

pHWHT. Sim-

ilarly, HWHT is applied to the corresponding weight kernel.

However, a kernel can be trained offline in the WHT-domain
[10], so its transform-domain representation K is directly

used during inference without explicit transform computations.

Subsequently, each channel in the transform-domain kernel K

and the WHT representation of Xp are multiplied element-
wise Tp � K, and the 4 × 4 × IC product is reduced to a

4× 4 patch Zp by accumulating the input channels as shown

in Figure 1. After applying the inverse WHT (i.e., HWHT
−1)

to Zp, Yp is obtained by taking the central 2×2 block of the
inverse transform result. Thus the process can be simplified

to applying a binary-valued 4× 2 matrix AIWHT in (1) (i.e.,

AIWHT
TZpAIWHT), which corresponds to the middle two

columns of HWHT
−1. The operation is summarized in (2).

HWHT =

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠ , AIWHT =

⎛
⎜⎜⎝

1 1
−1 1
1 −1
−1 −1

⎞
⎟⎟⎠ (1)

Yp = AIWHT
T

[
IC∑
c=1

[
HWHT

TXc
pHWHT

]�Kc

]
AIWHT (2)

B. Sparse-Orthogonal Kernels in HTNNs

HTNN [10] imposes a sparse-orthogonality property to

transform-domain convolutions and deliberately searches mul-

tiple heterogeneous transforms such that the position of impor-

tant weights in one transform domain is less likely to overlap

with the ones in other transform domains. In HTNN, kernels
belonging to different transform domains are pruned such that
their non-zero weights do not overlap (i.e., sparse-orthogonal).
The number of heterogeneous transform variants in an HTNN

is typically nt = 2 or 3, and each variant is defined by

multiplying a unique permutation matrix P to the left of

HWHT. Kernels that are sparse-orthogonal to each other can

be gathered to form a dense overlapped kernelD to process nt
output channels concurrently as shown in Figure 1 for nt = 3.
To concurrently compute the nt output channels for a given

patch position p, activation patches Xp are transformed in nt
different variants and overlapped using multiplexers to match

the overlapping pattern of D. The overlapped result Mp is

multiplied element-wise with D. The intermediate product’s

overlapping is then undone with de-multiplexers to accumulate

the input channels for each of the nt output channels. Finally,
the nt accumulated patches are inverse transformed.
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C. Bit-Sparse Canonical-Signed-Digit (CSD) Computation

HTNN [10] extends structured sparsity to the number

representation system by training weights in a bit-sparse

CSD format. CSD [13] is a numbering system that uses

ternary digits {−1, 1, 0} to represent an N -bit number with

reduced non-zero digits. For example, 23 requires 4 non-zero

bits (0101112) but only requires 3 non-zero digits in CSD

(1, 0,−1, 0, 0,−1) since 23 = 25 − 23 − 20 holds. HTNNs

impose an additional bit-sparsity constraint to limit the number

of non-zero digits in the CSD representation of weights to at
most 2. This technique allows replacing multiplication with
a single addition/subtraction without impacting the inference

accuracy [10]. In SONA, we implement 8-bit input MAC units

for BS-CSD weights with at most 2 non-zero digits, whereas

activations are quantized in 8-bit two’s complement.

D. Fully-Connected Layer (FCL) with Structured Sparsity

FCLs constitute a large portion of the weights that can be

pruned to sparse matrices. Accelerators optimized for sparse

FCLs such as [4] have shown that the location of non-zero

weights significantly impacts compute and memory resource

utilization. Despite employing compressed formats for data

storage, unstructured sparsity in FCLs leads to extraneous

zero padding and load imbalance where processing elements

(PEs) are assigned a varying number of non-zero weights

to multiply the same activation value. Although the original

HTNN [10] addresses sparse convolution overhead, it does not

provide a framework for learning structured sparsity for FCLs.

To overcome this, SONA introduces a new column-based-

block (CBB) structured sparsity pattern extending HTNNs to

sparse FCLs under a unified architecture. We train HTNNs

with CBB sparse weights and employ an index-based weight-

encoding representation to minimize the overhead of zero

padding while maximizing the potential memory and MAC

utilization and sharing the same hardware with transform-

domain convolutions.

III. SONA ARCHITECTURE

The proposed SONA architecture is motivated by the

drawbacks of existing unstructured sparse DNN accelerator

architectures such as [5] and [4] as well as by the promise of

HTNNs. Although the authors in [10] claim that HTNNs can

achieve 4.9− 6.8× complexity reduction compared to sparse

CNN models without compromising the inference accuracy,

this result has not been demonstrated in hardware. While the

software implementation of HTNNs performs fewer opera-

tions, the expected gain is much smaller as it incurs overhead

in handling WHT and sparse-orthogonality. The theoretical

analysis for HTNN’s gain in [10] does not address hardware

challenges for devising an accelerator architecture that can

efficiently maximize the observable gain.

A. Overall Architecture

Figure 2 shows the overall SONA architecture that unifies

WHT-domain sparse-orthogonal convolution and CBB-sparse

FCLs. All of the weights and activations are initially stored in
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Fig. 2. Overall architecture with highlighted WHT convolution layer path.

off-chip DRAM before being loaded into weight and activation

memories, respectively. Weights are converted into their BS-

CSD representation (Sec. III-F) before being loaded into

weight memory. SONA makes use of a 4 × 4 × nt BS-CSD
MAC unit (CMU) array and a NP × nt transform datapath

array to process NP patches in parallel using nt WHT variants.

The execution of a WHT-domain convolution layer is illus-

trated in Figure 2. Paths that are not active during transform

convolution are greyed out. Different colors in Figure 2 indi-

cate nt = 3 WHT variants. The nested-loop control to sweep

the patch position, output channels, and input channels follows

an output stationary (OS) ordering (Sec. III-C). Once weights

and activations are loaded into their respective memories, an

input channel tile of size I for NP 4 × 4 patches are sent

to the transform array. The resulting NP × nt transformed

4× 4× I patches are stored in transform memory consisting

of 4 × 4 × nt banks of depth I and data width NP × 8
bits. Transform memory organization details are discussed in

Sec. III-D. Subsequently, SONA performs element-wise BS-

CSD MAC operations in the CMU array. All NP activation

4 × 4 × I patches multiply the same 4 × 4 × I kernel that

merges nt sparse-orthogonal weights, which are color-coded

in Figure 2. Accumulation across the I channels is done locally
at the CMU level. Upon completing the accumulation for

a tile, the following group of orthogonal output channels is

processed to maximize the reuse of the transformed activa-

tions. If the layer’s number of input channels is larger than

I , the intermediate result from the previous set of output

channels is stored in accumulator memory. The subsequently

processed input channel tiles are added to the stored result

in accumulator memory until all tiles are processed. Then,

the NP accumulated 4 × 4 × OC patches are sent to the

inverse transform array and post-processing units (e.g., ReLU)

while the next set of NP patches are transformed. The final

2× 2× OC patches are written to the activation memory.

B. Reconfigurable Transform Datapaths

HTNNs require multiple (nt) WHT variants that can vary

depending on the network model. The transform datapaths

need to handle different permuted variants of the 2D WHT,
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Fig. 3. Permuted reconfigurable transform datapaths

which are defined as HP = PHWHT where P is the corre-

sponding permutation matrix. A 4 × 4 2D non-permuted fast

WHT requires 8 × 8 = 64 adders/subtractors. The transform

operation can be reordered and split into two identical opera-

tions as inY = HP
TXHP = (((XTP)HWHT)

TP)HWHT.

First, the 4× 4 input patch X is transposed and permuted. A

transform is then applied to each row of the intermediate result.

The operation is repeated a second time to produce the final

transformed patchY as shown in Figure 3 (top). The transpose

and permutation operations are combined into a 16 × 16
reconfigurable crossbar switch. To implement the permuted

variants of the inverse WHT as defined in Y = AP
TXAP,

note thatHWHT is an orthogonal matrix and that we can reuse

the WHT transform datapath in Figure 3 (top) to compute

the inverse WHT. However, this would be wasteful as we

only need the central 2 × 2 block. The permuted inverse

WHT variants (AP) correspond to the binary-valued (±1)
middle two columns of the HP

−1 matrices. Therefore, the

inverse transform is implemented using reconfigurable 4 × 2
binary matrix-vector multiplication (BiMV) blocks and trans-

pose interconnect networks as shown in Figure 3 (bottom).

Each datapath requires 6 × 6 = 36 adders/subtractors but no

multiplications. SONA employs nt × NP datapaths for each

of the (inverse) transform to process NP individual 4 × 4
patches using up to nt variants in parallel. These datapaths

are pipelined to not limit the performance of SONA.

C. WHT-Domain Sparse-Orthogonal Convolution Dataflow

The dataflow dictates memory access patterns and plays a

significant role in maximizing the energy-efficiency. Although

CNN accelerator dataflows have been extensively studied

[14], [15], they are not directly transferable to HTNN as its

internal dataflow is dissimilar to that of ordinary convolution.

Therefore, we studied the choice of heterogeneous WHT-

domain convolution dataflow prior to conceiving SONA.

For nt transform-domain variants, an HTNN layer loops

over three parameters: patch position p, orthogonal output
channels OC

nt
, and input channels IC . For a candidate ar-

chitecture, the memory sizes and access frequencies depend

on the input and output channels processing order. Figure 4
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Fig. 4. HTNN pseudcode for three candidate dataflows.

outlines three dataflows corresponding to different loop re-

orderings. The first is output stationary (OS), where the input
is processed by applying nt WHTs to each input channel

patch at a given position and accumulations are done locally

at the PE level. Transformed patches are reused by multiple

kernels and are stored in a buffer. Kernels are also reused

across different patch positions and are stored in a buffer. The

second is weight stationary (WS), where the weight is fixed

at the PE level. The third is input stationary (IS) where the

input is processed by applying nt WHTs to a patch position

at an input channel, so there is no buffer for transformed

activations. IS and WS need a buffer for output product patches

as accumulation cannot be done at the PE level, but the buffer

in IS is smaller than that in WS.

To identify an energy-efficient dataflow, we perform a

case study on WHT-domain convolution layers of ResNet-

20 and ConvPool-CNN-C (C-CNN-C). We quantify the buffer

(SRAM) sizes and access frequencies in terms of generic layer

parameters. We then outline a memory architecture where each

layer has on-chip SRAM macros that are sized to fit its layer

parameters without needing to tile within the layer, therefore

off-chip memory accesses are identical for all dataflows and

are excluded. We use TSMC 28/22nm memory compilers to

obtain SRAM access energies and exclude PE-internal register

access as its contribution is negligible relative to SRAM.

Figure 5 indicates that OS is the most energy-efficient dataflow

for WHT-domain convolution. WS and IS suffer from a large

amount of read-modify-writes, whereas OS accumulations

can be done at the PE level. In OS, the bandwidth of the

transform buffer is less than that of the accumulator buffer

because only 1/nt of the transformed patches are read in a

cycle to concurrently process nt output channels. Although

the transform buffer requires more write bandwidth than the

accumulator buffer, the former is written to less frequently

as transformed patches are re-used for multiple kernels. To

take advantage of these observations, the HTNN-specific OS

dataflow requires an efficient memory organization (Sec. III-D)

for transform buffer access.

D. Memory Organization

We overlap nt ≤ 3 orthogonal weight kernels prior to

storing them in weight memory and associate a 2-bit mask
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Fig. 5. Memory access energy comparison for C-CNN-C and ResNet-20 against HTNN dataflows: output/weight/input stationary (OS/WS/IS)

with each weight to indicate its corresponding WHT variant.

The input activation patches are transformed in all nt variant
domains and re-used across the output channel dimension, but

only 1/nt are used during element-wise multiplications. It

must be noted that the overlapping pattern is different from
channel to channel within a single layer, which makes reusing
transformed patch non-trivial. Therefore, it is critical to devise

an energy-efficient memory organization that limits the access
to only the required transformed patches in each cycle. To
process NP patches in parallel, the transform memory should

hold I × NP 8-bit transformed activation patches where I is

the tile size for IC . The read and write bandwidths of this

memory are 4 × 4 × NP and 4 × 4 × NP × nt, respectively.
One approach, single patch single row (SPSR), consists of

having NP × nt banks of depth I and word width 4× 4× 8
bits. Another approach, single activation single row (SASR),

consists of having NP × nt × 4 × 4 banks of depth I and

word width 8 bits. SASR provides more granularity than

SPSR in controlling which activations are read at once. With

SPSR, nt × NP patches are read when only NP are needed

while SASR helps limit the number of unnecessary memory

accesses. However, SASR incurs a larger peripheral memory

circuity overhead from employing many more smaller banks

and has the potential to be less area and energy efficient.

As a compromise, we propose the multiple activation single

row (MASR) scheme illustrated in Figure 6. In MASR, we

have nt × 4 × 4 banks of depth I and word width NP × 8
bits. The overlap pattern in MASR only depends on the kernel

processed and all NP patch positions are multiplied by the

same kernel in a cycle. During transform memory read, the

weight mask can be used to disable nt−1
nt

of the banks and load

only the NP overlapped transformed patches that are needed.

Figure 6 illustrates MASR for I = 32, NP = 4, nt = 3. The
top left kernel weight is associated with variant 0, and all the
activations of each transformed patch using variant 0 are in

bank 0. For element-wise multiplication, we enable that bank
and disable the other two corresponding to variants 1 and 2.
Our experimental results using Arm register file compilers in

TSMC 28/22nm technology indicate that for I = 32, MASR

has {1.2×, 1.7×} and {1.6×, 2.4×} less access energy than

SPSR and SASR, respectively, for NP = {2, 4} at the cost

of being {1.8×, 1.3×} less area efficient than SPSR. Note

that SASR is overall the most flexible but it is the least area-

efficient. It is also not scalable as the increased number of

small memory banks incurs peripheral memory circuity energy

overhead. Thus to exploit patch parallelism, MASR becomes
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Fig. 6. MASR transform memory organization (I = 32, NP = 4, nt = 3).

necessary to maximize the energy-efficiency of the design.

E. Column-Based-Block Sparse Fully-Connected Layer

To fully exploit both weight and activation sparsity, we

explore an outer-product sparse FCL implementation based on

an IS dataflow. Consider employing index-based compression

to store the weight matrixW where the location of non-zeros

are random (unstructured) as in Figure 7. We first reshape

the original column into a C/B-row matrix, where C is

the number of weights in a compressed word and B is the

weight block size. Then to compressW along its columns, the

weights are packed densely in the direction shown in Figure 7.

Each compressed word contains C/B blocks of weights. Each

weight is associated with its originating column number in the

C/B-row matrix. Each weight’s position in the compressed

word corresponds to its position in the chunk. Although W
can be aggressively pruned, unstructured weight sparsity could

lead to collisions after reshaping the column and non-dense

(underutilized) weight blocks. For example, the weight block

collisions in Figure 7 leads to having an additional weight

word just for one non-zero block. In general, these overheads

translate to both inefficient memory and MAC utilization.

To combat this inefficiency, we propose a novel CBB

structured pruning method for sparse FCLs to minimize zero

padding overhead while sharing the same hardware with WHT-

domain convolutions. During FCL training, we impose the

following sparsity constraint. Given a target density d, we
prune W such that the number of block collisions in each

row of the reshaped column is the same. As a result, we

minimize zero padding and maximize potential memory and

MAC utilization. To verify whether CBB pruning can achieve

high sparsity while maintaining inference accuracy, we test

this approach’s feasibility on the FCLs of VGG-Nagadomi
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Fig. 7. Index-based encoding overhead for unstructured sparse FCL weights.

(VGG-N) HTNN [10]. We train, prune, and quantize FCL

weights using 8-bit BS-CSD in PyTorch with C = 64, B = 4,
and d = 6.25% for the CIFAR-10 dataset. Experiments show

that the top-1 accuracy post-training, pruning, and BS-CSD

quantization are 93.01%, 92.84%, and 92.80%, respectively.

CBB pruning can operate at different layer-dependent densities

(in the range of 6.25% – 50%) that do not degrade the accuracy

(in the range of 92.80% – 92.98%) by controlling the number

of block collisions in each row of the reshaped columns of

W.

FCL execution in SONA disables all (inverse) transform

datapaths and memories and employs an IS dataflow where

only non-zero activations in the input FIFO of Figure 2 are

detected and broadcast to the CMU array. We also implement

outer-product multiplication for full CMU array utilization

using only 1/nt of the accumulator memory banks. C and B
are selected based on NP and the 4× 4 patch-based dataflow

such that C = 4× 4×NP and B = NP in order to share the
datapath between WHT-domain convolution and sparse FCL.
Each one of the utilized accumulator memory bank maps to

one of the C/B rows in the reshaped columns of W and

each block maps to an address in a bank. The maximum OC

supported for an FCL is bounded by 4 × 4 × NP × OC/nt
where the depth of an accumulator memory bank is OC/nt.

F. Bit-Sparse Canonical-Sign-Digit (BS-CSD) MAC Unit

To take advantage of BS-CSD and non-uniform quantization

when performing MAC operations, a hardware-friendly rep-

resentation is required to represent non-zero weights. Given

at most 2 non-zero CSD digits, which we will refer to as

bits a and b, we encode the respective signs, asign and bsign,
and positions, apos and bpos, of these bits to determine the

operands of the final addition/subtraction. Without loss of

generality, we assume that apos > bpos (apos ∈ {0, 1, . . . , 7}
and bpos ∈ {0, 1, . . . , 5}) and encode the traditionally 8-
bit weights w using 9 bits in the form of w = (asign �
apos) + (bsign � bpos) where � denotes the left bit-shift.

Note that the CSD representation of a number does not

contain two adjacent non-zero digits. Thus, the relationship

between apos and bpos becomes apos > bpos+1. Also note that
having 87 quantization levels (byproduct of having ≤2 non-

zero digits) enables memory footprint reduction in off-chip
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Fig. 8. BS-CSD-MAC unit and 8-bit BS-CSD multiplier.

memory by storing each weight as a 7-bit code, which can be
converted to a 9-bit representation using a look-up-table before
storing it in weight memory. Figure 8 shows the circuit imple-

mentation for BS-CSD weight multiplication and illustrates an

example where x = 43 and w = (1, 0,−1, 0, 0, 0, 0, 0) = 96.
Using the proposed representation, 8-bit multiplication is

replaced by two bit-shifts and one 16-bit addition: x · w =
((asign · x) � apos) + ((bsign · x) � bpos). SONA employs

4× 4× NP BS-CSD-MAC units (CMUs) shown in Figure 8

to perform dense (after merging nt sparse-orthogonal weights)
element-wise multiplications. In each cycle, a CMU performs

at most one non-zero and nt−1 implicit zero MAC operations.

The inputs are the 8-bit two’s complement activation x, the 9-
bit BS-CSD weight w and a 2-bit weight mask wM indicating

the transform variant associated with w. As discussed in Sec.

III-C, accumulation is done locally in registers that map to the

concurrently computed nt output channels.

IV. EVALUATION

We evaluate SONA using NP = 4 and a tile size of

I = 32. Table I summarizes the SONA accelerator config-

uration. To estimate energy efficiency, performance, and area,

we fully implement the RTL design of SONA in Verilog

and synthesize it using Synopsys Design Compiler in TSMC

22nm. The design is synthesized at 500MHz. PrimeTime PX

(PTPX) is used to estimate the energy consumption of the

synthesized design using the gate-level netlist and fast signal

database (FSDB) file containing switching activity. To com-

pare against prior dense and sparse accelerator designs whose

RTL implementations are not publicly available, we utilize

a simulator verified against our RTL implementation. For a

{dense, sparse} CNN benchmark, we employ {Eyeriss [14],
SCNN [5]} and {TimeLoop [16], DNNSim [17]} to simulate

their performance and memory access traces, respectively. For

a sparse FCL benchmark, we employ EIE [4] and built our

own cycle-accurate simulator that was verified against the

results reported in [4]. Arm memory compilers in TSMC

22nm are used to estimate the energy consumption of on-

chip buffers/memories. We approximate the energy of DRAM

accesses to 100pJ per 8 bits as in [18]. All designs are

adjusted to have the same number of multipliers. We obtain

the energy costs of multipliers and adders under the same
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TABLE I
SONA CONFIGURATION AND AREA SUMMARY.

Component Size Area (mm2) Power (mW)
Activation Memory 420KB 1.262 2.3
Transform Memory 6KB 0.083 9.7
Accumulation Memory 18KB 0.192 4.9
Weight Memory 352KB 1.073 6.5
Input FIFO 1 KB 0.003 0.3
(Inverse) Transform (12) 12 datapaths (0.022) 0.039 (1.6) 2.3
CMU Array 64 CMUs 0.023 8.6
Other N/A 0.152 10.4

Total N/A 2.85 46.2

22nm technology node to estimate the computation energy

expenditure of SONA and baseline designs. All evaluations

include (inverse) transform overheads that are insignificant

(≈ 8.03% and 4.17% of SONA’s overall latency and energy).

Finally, we compare against [19], an optimized dense CNN

accelerator whose RTL implementation was made available to

us, using PTPX and post-synthesis FSDB dumps to get an

accurate relative energy-efficiency of SONA.

We make use of the neural network workloads provided in

[2], [9], [10], ResNet-20 (nt = 3) and VGG-N (nt = 2) using
CIFAR-10, and C-CNN-C (nt = 3) using CIFAR-100, as well
as their respective equivalent CNN workloads. Furthermore,

we evaluate an additional benchmark using ImageNet, ResNet-

18 and its equivalent HTNN (nt = 3). As the original HTNN
[10] targets smaller networks for edge applications where

training time is manageable, the training time is exacerbated

for larger networks and datasets, rendering tasks such as

ImageNet ResNet-18 unfeasible. To overcome the limitations

of the training code released with [10], we implement cus-

tom CUDA extensions. We also supplement it with CBB-

structured sparsity learning for VGG-N FCLs (Sec. III-E)

unavailable in [10]. We trained these models in PyTorch using

our functionally equivalent custom CUDA layers. Overall, our

optimizations improve the training speed by 2 − 13× on an

Nvidia A40 GPU compared to the code in [10]. For ResNet-

18 HTNN, training is done using 4 NVIDIA A40 GPUs at a

rate of ≈ 40 minutes/epoch. For reference, ResNet-18 CNN

can be trained using an NVIDIA A40 GPU at the same rate.

With our optimized training framework, the top-1 accuracies

of {ResNet-20, VGG-N, C-CNN-C, ResNet-18} HTNNs and

baseline sparse CNNs are {91.56%, 92.80%, 70.51%, 69.8%}
and {91.44%, 93.08%, 70.55%, 69.2%}, respectively. For
HTNNs, weights are 8-bit BS-CSD quantized. For sparse

CNNs, we apply the deep compression strategy described in

[2] and weights are 8-bit uniformly quantized.

A. Simulator-Based Results

Speedup Comparison: Figure 9 shows the speedup of

SONA over Eyeriss and SCNN for the convolutional layers

of ResNet-20, VGG-N, C-CNN-C, ResNet-18. While SCNN

leverages weight and activation sparsity, SONA only leverages

weight sparsity for WHT-domain convolution. Nevertheless,

SONA can achieve {4.4×, 2.1×}, {4.2×, 1.5×}, {6.1×,
2.7×}, {6.1×, 2.1×} overall speedup compared to {Eyeriss,
SCNN} across all layers of ResNet-20 (CIFAR-10), VGG-

N, C-CNN-C, ResNet-18 (ImageNet), respectively. Although
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Fig. 9. Conv. layer speedup and energy-efficiency of Eyeriss, SCNN, SONA
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Fig. 10. VGG-N FCL speedup and energy-efficiency of dense, EIE, SONA

the relative speedup of SONA over SCNN diminishes when

the activation density is unusually low (≈ 20%) in later

layers, SONA maintains higher speedup because it does not

incur frequent execution stalls from intra-PE fragmentation

and from the way SCNN’s PT-IS-CP-sparse dataflow partitions

the work across the PEs. SONA can concurrently compute

nt > 1 sparse-orthogonal channels while benefiting from the

multiplicative gains of replacing convolution with element-

wise multiplications in heterogeneous transform domains. For

comparison, Figure 9 shows the inference speed of SONA

when only one transform domain is utilized (nt = 1) for

convolution layers. Figure 10 shows that SONA can achieve

≈ 16× and 2× overall speedup on FCLs of VGG-N over

EIE and a naive dense architecture that leverages neither

weight nor activation sparsity, respectively. EIE suffers from

load imbalance because it uses compressed sparse column

weight representation despite using an activation queue. On the

contrary, the proposed CBB-structured sparsity allows SONA

to maintain full MAC array utilization (Sec. III-E).

Energy-Efficiency Comparison: Figure 9 also shows that

SONA can achieve {4.8×, 3.4×}, {3.9×, 1.7×}, {5.7×,
2.4×}, {5.9×, 2.2×} overall energy-efficiency gain compared
to {Eyeriss, SCNN} across layers of ResNet-20 (CIFAR-10),

VGG-N, and C-CNN-C, ResNet-18 (ImageNet), respectively.

SCNN’s outer product leads to an overhead of accumulation

buffers with expensive read-modify-write accesses that hurt

SCNN’s energy efficiency and detract from the multiplicative

gains expected from leveraging sparsity. SONA stands out

because it is able to process sparse-orthogonal transform-

domain convolution (nt > 1) using the HTNN-specific OS

dataflow. For ResNet-20, the transform memory accounts for

15% of the total energy (excluding DRAM), which, in the

absence of MASR (Sec. III-D), would increase by at least

1.7×. The BS-CSD MAC array accounts for 24% of the

total energy (excluding DRAM) which, in the absence of BS-

CSD, would increase by 1.6×. Figure 10 shows that SONA

improves the energy-efficiency of the naive architecture and

EIE by 14.9× and 2.4×, respectively, across FCLs of VGG-
N. Although both approaches show improvements over the
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TABLE II
POST-SYNTHESIS DESIGN COMPARISON SUMMARY.

Design synthesized (22nm, 0.8V) SONA [19]
# MACs 64 512
Clock Frequency (MHz) 500 250 62.5
Energy Efficiency(Inference/J, ResNet-20) 60247 21031 15610

TABLE III
ACCELERATOR BENCHMARK COMPARISON SUMMARY.

Accelerator A [14] [5] [3] [21] [6] [7] [20]
SONA Energy 5.1 2.4 1.7 2.7 1.7 1.0 0.8Efficiency over A

SONA Speedup over A 5.2 2.1 1.3 1.5 2.1 1.2 2.5

naive architecture, SONA does not incur unnecessary memory

storage and access as it capitalizes on CBB sparsity’s ability

to maximize memory utilization and limit zero padding.

B. Post-Synthesis Design Comparison

To better situate SONA’s energy efficiency if it were to be

fabricated on a chip, we compare synthesized SONA against

the synthesized CNN accelerator design made available to us

in [19] in TSMC 22nm. We evaluate both at their minimum

slack design point (250 MHz for [19] and 500 MHz for

SONA). Since the design in [19] has an 512 MAC array that

is 8× more than that in SONA (Table II), we also evaluate

[19] at 62.5MHz so that both have the same number of MAC

operations per unit time. We exclude off-chip DRAM access

energy because both designs store all weights and activations

in on-chip memory for ResNet-20. If DRAM was included for

bigger networks, SONA would benefit from fewer accesses

due to fewer sparse-orthogonal overlapped kernels. Compared

to [19] synthesized at {250, 62.5} MHz, SONA is {2.9×,
3.9×} more energy-efficient for ResNet-20.

C. Comparisons with Sparsity-Aware Accelerators

We also present comparisons with recent sparsity-aware

accelerators listed in Table III. As open-source simulators are

not available to perform direct comparisons for those designs

(except [5], [14]), we provide indirect comparisons via the

gains claimed in [3], [6], [7], [20], [21] for common/similar

benchmarks. For example, [21] (8-bit) reports 1.4× speedup

and 0.9× energy-efficiency compared to [5] (8-bit), overall.

We can then extrapolate that SONA is 2.7× more energy

efficient and achieves a 1.5× speedup over [21], overall. The

methodology described in this example is identical for [3],

[6], [7], [20]. Table III shows that SONA exhibits higher

energy efficiency and speedup in general. Sec. V discusses the

inefficiencies in those designs and SONA’s relative advantages.

V. RELATED WORKS

Sparse-Winograd CNNs have been studied prior to HTNNs

to reduce the computational complexity of convolution [8],

[9]. However, our training of ResNet18 using ImageNet shows

that HTNN can outperform [8] in terms of top-1 accuracy

(69.8% for HTNN vs. 66.8% in [8]). It is also shown in [10]

that the complexity of HTNN is 1.93 – 5.12× lower than

that of sparse-Winograd models. SONA is able to support

a variety of CNNs since HTNN is generalizable to kernels

of any size and in particular can replace the commonly used

3×3 convolution without accuracy degradation. For depthwise
separable convolutions, kernel sparse-orthogonality is foregone

(i.e., nt = 1) and SONA’s improvement will solely stem from

transform-domain element-wise multiplications. For example,

if applied to MobileNetV1/2, SONA can theoretically save

≈ 48%/56% MAC operations for those layers, respectively.

However, MobileNetV1/2 cannot fully take advantage of

HTNN optimizations as their primary workload is 1×1 point-
wise convolution (supported by SONA but identical in both

HTNNs and CNNs).

To take advantage of both weight and/or activation sparsity,

several sparsity-aware accelerators have been proposed in the

literature. Both [5] and [4] explore unstructured sparsity and

suffer from load imbalance. [3] only performs the neces-

sary multiplications using a high-energy intersection operation

which causes frequent stalls. [6] and [7] use an indexing

module requiring wide and costly multiplexers. [7] reduces the

multiplexer size in [6] by grouping weights but it observes a

performance overhead from irregular weight block locations.

Although SONA only targets weight sparsity, it mitigates load

imbalance via structured sparse-orthogonal weights. Other

works exploit inherent bit-level sparsity. Most recently, [21]

eliminates ineffectual multiplications with intermediate zero

bits, targeting varying bit-widths and exhibiting significant

gains for higher bit precisions (16 bits). Meanwhile, SONA

weights are 8-bit BS-CSD, therefore trading off configurability

for increased opportunity of more specific optimizations in

addition to using sparse orthogonality. Other approaches target

structured model compression. [22] leverages block-circulant

matrices and Fast Fourier Transform (FFT) based convolution.

Although [22] supports convolution and FCL, it does not

leverage sparsity and requires complex FFT hardware, whereas

SONA employs patch-based WHT only requiring additions.

[20] leverages structured sparsity using a time-unrolled sys-

tolic array to serialize MAC processing, demonstrating gains

in energy at the cost of reduced speedup.

VI. CONCLUSION

In this paper we introduce SONA, a novel accelerator

for transform-domain neural networks with structured sparse-

orthogonal weights where convolution operations are replaced

by element-wise multiplications. SONA employs an HTNN-

specific OS dataflow coupled with an energy-efficient mem-

ory organization to reduce the overhead of sparse-orthogonal

WHT-domain concurrent processing. SONA leverages BS-

CSD weights to reduce multiplications to simpler additions.

Moreover, SONA uses CBB structured pruning to efficiently

support sparse FCLs while maintaining full MAC array utiliza-

tion. For convolution layers and FCLs, SONA can reduce the

inference energy by 5.1× and 2.4×, respectively, compared to
prior accelerator designs.

REFERENCES

[1] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convo-
lutional neural networks using energy-aware pruning,” in Proceedings

25

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 31,2024 at 20:59:11 UTC from IEEE Xplore.  Restrictions apply. 



of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[2] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” 2016.

[3] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar,
“Sparten: A sparse tensor accelerator for convolutional neural
networks,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’52. New York, NY,
USA: Association for Computing Machinery, 2019, p. 151–165.
[Online]. Available: https://doi.org/10.1145/3352460.3358291

[4] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), 2016, pp. 243–254.

[5] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ser. ISCA ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 27–40. [Online]. Available:
https://doi.org/10.1145/3079856.3080254

[6] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2016, pp. 1–12.

[7] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li,
T. Chen, and Y. Chen, “Cambricon-s: Addressing irregularity in sparse
neural networks through a cooperative software/hardware approach,” in
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2018, pp. 15–28.

[8] S. R. Li, J. Park, and P. T. P. Tang, “Enabling sparse winograd
convolution by native pruning,” CoRR, vol. abs/1702.08597, 2017.
[Online]. Available: http://arxiv.org/abs/1702.08597

[9] X. Liu, J. Pool, S. Han, and W. J. Dally, “Efficient
sparse-winograd convolutional neural networks,” in International
Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=HJzgZ3JCW

[10] Y. Chen, B. Liu, P. Abillama, and H.-S. Kim, “Htnn: Deep learning in
heterogeneous transform domains with sparse-orthogonal weights,” in
2021 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), 2021, pp. 1–6.

[11] W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image
coding,” Proceedings of the IEEE, vol. 57, no. 1, pp. 58–68, 1969.

[12] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“Inverted residuals and linear bottlenecks: Mobile networks for
classification, detection and segmentation,” CoRR, vol. abs/1801.04381,
2018. [Online]. Available: http://arxiv.org/abs/1801.04381

[13] R. M. Hewlitt and E. Swartzlantler, “Canonical signed digit repre-
sentation for fir digital filters,” in 2000 IEEE Workshop on SiGNAL
PROCESSING SYSTEMS. SiPS 2000. Design and Implementation (Cat.
No. 00TH8528). IEEE, 2000, pp. 416–426.

[14] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” in
2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), 2016, pp. 367–379.

[15] S. Gudaparthi, S. Narayanan, R. Balasubramonian, E. Giacomin,
H. Kambalasubramanyam, and P.-E. Gaillardon, “Wire-aware
architecture and dataflow for cnn accelerators,” in Proceedings
of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’52. New York, NY, USA: Association
for Computing Machinery, 2019, p. 1–13. [Online]. Available:
https://doi.org/10.1145/3352460.3358316

[16] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop:
A systematic approach to dnn accelerator evaluation,” in 2019 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2019, pp. 304–315.

[17] isakedo, “Dnnsim,” https://github.com/isakedo/DNNsim, 2020.
[18] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell,

K. Cao, H. Ha, P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar:
Using halide’s scheduling language to analyze dnn accelerators,”
in Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating

Systems, ser. ASPLOS ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 369–383. [Online]. Available:
https://doi.org/10.1145/3373376.3378514

[19] H. An, S. Schiferl, S. Venkatesan, T. Wesley, Q. Zhang, J. Wang,
K. D. Choo, S. Liu, B. Liu, Z. Li, L. Gong, H. Zhong, D. Blaauw,
R. Dreslinski, H. S. Kim, and D. Sylvester, “An ultra-low-power image
signal processor for hierarchical image recognition with deep neural
networks,” IEEE Journal of Solid-State Circuits, vol. 56, no. 4, pp.
1071–1081, 2021.

[20] Z.-G. Liu, P. N. Whatmough, Y. Zhu, and M. Mattina, “S2ta: Exploiting
structured sparsity for energy-efficient mobile cnn acceleration,” in
2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2022, pp. 573–586.

[21] S. Sharify, A. D. Lascorz, M. Mahmoud, M. Nikolic, K. Siu, D. M.
Stuart, Z. Poulos, and A. Moshovos, “Laconic deep learning inference
acceleration,” in 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA), 2019, pp. 304–317.

[22] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang,
X. Qian, Y. Bai, G. Yuan, X. Ma, Y. Zhang, J. Tang, Q. Qiu,
X. Lin, and B. Yuan, “Circnn: Accelerating and compressing
deep neural networks using block-circulant weight matrices,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-50 ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 395–408. [Online].
Available: https://doi.org/10.1145/3123939.3124552

26

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 31,2024 at 20:59:11 UTC from IEEE Xplore.  Restrictions apply. 


