
TaskFusion: An Efficient Transfer Learning Architecture with
Dual Delta Sparsity for Multi-Task Natural Language Processing

Zichen Fan
University of Michigan

Ann Arbor, Michigan, USA
zcfan@umich.edu

Qirui Zhang
University of Michigan

Ann Arbor, Michigan, USA
qiruizh@umich.edu

Pierre Abillama
University of Michigan

Ann Arbor, Michigan, USA
pabillam@umich.edu

Sara Shoouri
University of Michigan

Ann Arbor, Michigan, USA
sshoouri@umich.edu

Changwoo Lee
University of Michigan

Ann Arbor, Michigan, USA
cwoolee@umich.edu

David Blaauw
University of Michigan

Ann Arbor, Michigan, USA
blaauw@umich.edu

Hun-Seok Kim
University of Michigan

Ann Arbor, Michigan, USA
hunseok@umich.edu

Dennis Sylvester
University of Michigan

Ann Arbor, Michigan, USA
dmcs@umich.edu

ABSTRACT

The combination of pre-trainedmodels and task-specific fine-tuning

schemes, such as BERT, has achieved great success in various natu-

ral language processing (NLP) tasks. However, the large memory

and computation costs of such models make it challenging to de-

ploy them in edge devices. Moreover, in real-world applications

like chatbots, multiple NLP tasks need to be processed together to

achieve higher response credibility. Running multiple NLP tasks

with specialized models for each task increases the latency and

memory cost latency linearly with the number of tasks. Though

there have been recent works on parameter-shared tuning that

aim to reduce the total parameter size by partially sharing weights

among multiple tasks, computation remains intensive and redun-

dant despite different tasks using the same input. In this work, we

identify that a significant portion of activations and weights can

be reused among different tasks, to reduce cost and latency for

efficient multi-task NLP. Specifically, we propose TaskFusion, an

efficient transfer learning software-hardware co-design that ex-

ploits delta sparsity in both weights and activations to boost data

sharing among tasks. For training, TaskFusion uses ℓ1 regularization
on delta activation to learn inter-task data redundancies. A novel

hardware-aware sub-task inference algorithm is proposed to exploit

the dual delta sparsity. We then designed a dedicated heterogeneous

architecture to accelerate multi-task inference with an optimized

scheduling to increase hardware utilization and reduce off-chip

memory access. Extensive experiments demonstrate that TaskFu-

sion can reduce the number of floating point operations (FLOPs)

by over 73% in multi-task NLP with negligible accuracy loss, while

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589040

adding a new task at the cost of only < 2% parameter size increase.

With the proposed architecture and optimized scheduling, Task-

Fusion can achieve 1.48-2.43× performance and 1.62-3.77× energy

efficiency than those using state-of-the-art single-task accelerators

for multi-task NLP applications.

CCS CONCEPTS

• Computer systems organization → Neural networks.

KEYWORDS

transfer learning, multi-task, sparsity, transformer, heterogeneous

architecture, natural language processing, accelerator, deep learning

ACM Reference Format:

Zichen Fan, Qirui Zhang, Pierre Abillama, Sara Shoouri, Changwoo Lee,

David Blaauw, Hun-Seok Kim, and Dennis Sylvester. 2023. TaskFusion:

An Efficient Transfer Learning Architecture with Dual Delta Sparsity for

Multi-Task Natural Language Processing. In Proceedings of the 50th Annual

International Symposium on Computer Architecture (ISCA ’23), June 17–21,

2023, Orlando, FL, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/

10.1145/3579371.3589040

1 INTRODUCTION

Natural language processing (NLP) is critical in enabling devices to

learn and act appropriately by understanding languagewith context,

which is becoming a new interface between users and systems

such as voice assistants and chatbots. Recently, transfer learning

[1, 30] has become one of most trending approaches for NLP. One

of the transfer learning technique is model pre-training and fine-

tuning, which has been shown by previous studies [3, 7, 24, 34] to

be effective for improving various NLP tasks. The idea is to first

pre-train a generalized model, then fine-tune its parameters for a

specific sub-task such that the same network structure is reused.

Although that task-specific fine-tuning strategy drastically reduces

training complexity, the computational and storage requirements

become bottlenecks when the system needs inferences for multiple

tasks.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Z. Fan, Q. Zhang, P. Abillama, S. Shoouri, C. Lee, D. Blaauw, H-S. Kim and D. Sylvester

“My name is Sarah and
I live in London”

My name is Sarah and I live in London .PERPER LOCLOCMy name is Sarah and I live in London .PER LOC

Voice
Assistant

Smartphone

Named Entity Recognition

Sentiment Analysis

Part-of-speech Tagging

NegativePositive NegativePositive

My name is Sarah and I
live in London .

PRPPRP NNNN VBZVBZ NNPNNP CCCC PRPPRP
VBPVBP ININ NNPNNP

Multi-task Processing

Post-
Processing

Response
…...

…...

(c) Computation Comparison

+100% / sub-task +<2% / sub-task

(b) Storage Comparison
Task-specific Fine-tuning – No Sharing
Parameter-shared Tuning – Only Weight Sharing
Proposed (TaskFusion) –
Weight & Activation Sharing

base task + sub-task 1 + sub-task 2 + sub-task 3base task + sub-task 1 + sub-task 2 + sub-task 3

base task + sub-task 1 + sub-task 2 + sub-task 3base task + sub-task 1 + sub-task 2 + sub-task 3

(a) Case Study

+100% / sub-task
+~27% / sub-task

Hi Sarah! Nice
to meet you. How

is London?

N
or

m
al

iz
ed

N
or

m
al

iz
ed

(d) Computation Pattern Comparison

Task-specific Fine-tuning – No Sharing

Parameter-shared Tuning – Only Weight Sharing

Proposed (TaskFusion) – Weight & Activation Sharing

base task
processing

Dense
MM

Dense
MM

Sparse
MM

Sparse
MM

Dense
MM

Dense
MM

sub-tasks
processing

L
baseW

L
baseA

_
L
sub FA

_
L
sub FW

_
L
sub PW

L+1
baseA

L
baseA

L
baseW

L+1
baseA

_
L+1
sub FA

base task
processing sub-tasks

processing

_
L
sub PA _

L+1
sub PA

base task
processing

sub-tasks
processing

_
L
sub TA

_
L+1
sub TA

Input/output dataflow
weight dataflow memory sharing

_
L
sub TW _
L
sub TW

Dense
MM

L
baseA L+1

baseA

L
baseW

Figure 1: TaskFusion Overview: (a) A case study of multi-task

processing in edge devices.(b) Storage requirement versus

number of sub-tasks comparison (c) Computation consump-

tion versus number of sub-tasks comparison. (d) Computa-

tion pattern comparison. under multi-task processing sce-

nario.

Consider a practical scenario of a smart voice assistant where

different NLP tasks need to be executed on one sentence or a sen-

tence group (sentence batch) as shown in Fig. 1 (a). In this scenario,

the same sentence is processed for multiple tasks such as senti-

ment analysis [41], named entity recognition [38], part-of-speech

tagging[27] to understand the user’s request and give a satisfactory

answer. In the proposed framework, one task is treated as the base

task and the other tasks as sub-tasks. Fig. 1 (b) shows the storage

requirement of edge devices versus the number of sub-tasks when

multi-task NLP is based on conventional task-specific fine-tuning,

where each model for a sub-task requires a new set of weights sizing

the same as the pre-trained model. Therefore, 100% extra storage

per task is needed. When BERTlarge (340 million parameters [7]) is

used as the pre-trained model, an additional ≈ 1.3GB of memory is

needed per sub-task, which is impractical for resource-constrained

edge devices.

In order to alleviate the storage bottleneck for multi-task sce-

narios, parameter-shared tuning [13, 19, 52] has recently been

proposed. Instead of fine-tuning all parameters in the pre-trained

model, parameter-shared tuning only changes a small amount of

weights for each sub-task and leaves the rest unchanged from the

pre-trained model. Fig. 1 (b) shows the storage requirement versus

the number of tasks for parameter-shared tuning, which increases

linearly with the number of tasks but with a much smaller slope

compared to task-specific fine-tuning. However, parameter-shared

tuning only reduces the amount of storage but does not impact the

amount of computation. Fig. 1 (c) shows the computation compari-

son under the single-input-multi-task scenario with conventional

task-specific fine-tuning and parameter-shared tuning approach

expressed in the following formulas where 𝐴𝑙 and𝑊 𝑙 denote acti-

vations and weights of the 𝑙𝑡ℎ linear layer.

Layer L of the base task:

AL+1
base = AL

base ×WL
base (1)

Layer L of a sub-task with task-specific fine-tuning:

AL+1
sub_F = AL

sub_F ×WL
sub_F (2)

Layer L of a sub-task with parameter-shared tuning:

AL+1
sub_P = AL

sub_P ×WL
sub_P

= AL
sub_P × (WL

base + 𝛿WL
sub_P)

(3)

For a linear layer L, Fig. 1 (d) compares the computation patterns

for the base task and sub-tasks with task-specific fine-tuning or

parameter-shared tuning. The base task typically corresponds to

the pre-trained model. Suppose activations and weights are rep-

resented as dense matrices. Then for the base task, always one

dense matrix-matrix multiplication is executed. For task-specific

fine-tuning, Wsub_F is completely different from Wbase and a dense

matrix-matrix multiplication is still needed in each sub-task. There-

fore, task-specific fine-tuning cannot save any computation. For

parameter-shared tuning,Wsub_P can bewritten asWbase+𝛿Wsub_P.

Although 𝛿Wsub_P can be very sparse, computation cannot be saved

and reused between base and sub-tasks since activations vary be-

tween them. An example in Fig. 2 shows the density change in delta

activation between base task and sub-task. Even if weights differ

only slightly (3 out of 16) between the sub-task and base task after

parameter-shared tuning, activations vary rapidly (6 of 8) after only

the first layer for the same input. This dense delta activation makes

TaskFusion: An Efficient Transfer Learning Architecture with Dual Delta Sparsity for Multi-Task Natural Language Processing ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Base
task

Sub-
task

baseW

_ P base subsu Pb _W WW

base 0A A

_sub P 0A A

High
Delta

Density

Figure 2: Delta activation density rises rapidly even in the

first linear layer.

it difficult to share information between base task and sub-tasks

and poses a challenge for computation saving in sub-tasks.

Recently, LeTS [11] proposed a new computation-friendly NLP

transfer learning algorithm that can reduce 49.5% of computations

for sub-tasks. However, LeTS changes the original BERT layer cas-

cading structure by adding extra pooling and Bi-LSTM layers, lim-

iting its application to classification tasks only without covering

sequence-in-sequence-out tasks such as question-answering, NER,

POS tagging, summarization, etc. Moreover, the LeTS network struc-

ture requires the storage of additional pre-trained intermediate

activations during inference, which increases activation memory

overhead.

In this paper, we propose TaskFusion, which to our knowledge is

the first software-hardware co-optimized architecture design for

efficient multi-task NLP. The main idea of TaskFusion is to boost

data sharing between tasks for both weights and activations. First,

we design an efficient transfer learning algorithm that enables the

model to automatically learn data redundancies between the base

task and sub-tasks. The training process maximizes the sparsity

in delta weights and delta activations while retaining accuracy.

TaskFusion can reduce both storage and computation in multi-task

scenarios. Moreover, our algorithm can be combined with previous

single-task acceleration methods to obtain more improvements. To

unleash the full potential of our algorithm, we design a dedicated

heterogeneous architecture, which consists of a dense core, a sparse

core and an attention core. With a sparse core, the heterogeneous

architecture can more efficiently accelerate sparse matrix-matrix

multiplication (spMM) in sub-tasks. In addition, we propose a novel

multi-task scheduling scheme to fully utilize the proposed architec-

ture’s resources and memory bandwidth, which further speeds up

multi-task processing.

In summary, our work makes the following contributions:

• An efficient transfer learning algorithm that boosts weight

and activation sharing between base task and sub-tasks and

reduces both storage and computation when executing sub-

tasks in multi-task processing.

• Recognizing that TaskFusion can be combined with previ-

ous single-task transformer accelerators, we present a novel

heterogeneous architecture by adding a dedicated sparse

computation core.

• A multi-task scheduling scheme that further improves the la-

tency and efficiency through exploiting hardware utilization

and memory bandwidth.

• Experiments and evaluations on the TaskFusion algorithm,

architecture, and scheduling from accuracy, latency, and en-

ergy efficiency perspectives, covering more than 10 NLP

tasks and 2 different pre-trained models. TaskFusion algo-

rithm can save more than 98% storage and 73% computation

per sub-task by using sparse delta weight and activation.

TaskFusion architecture can achieve up to 3.75x speed-up

and 2.86× energy efficiency compared to previous state-of-

the-art single task accelerators under multi-task scenarios.

2 BACKGROUND

2.1 Pre-trained Model and Task-specific
Fine-tuning Scheme

Task-specific fine-tuning has become a standard paradigm and

demonstrated remarkable performance in various applications from

vision [9, 17] to natural language processing [3, 7, 24, 34]. Pre-

training is usually an unsupervised learning procedure performed

on very large datasets. For instance, RoBERTa [24] uses five English-

language corpora of varying sizes and domains, totaling over 160GB

of uncompressed text. The pre-trainedmodel (PTM) provides a good

common initialization and basic token information for supervised

learning of downstream tasks. The fine-tuning then trains task-

specific models on downstream tasks (sentiment analysis, named

entity recognition, etc.) by simply fine-tuning all pre-trained pa-

rameters as Fig. 3 shows. Suppose each sub-task 𝜏 ∈ T has an

associated dataset D𝜏 = {𝑥
(𝑛)
𝜏 , 𝑦

(𝑛)
𝜏 }𝑁𝑛=1. For all tasks, task-specific

fine-tuning aims to produce a set of model parameters𝑤𝜏 to opti-

mize the following constrained optimization problem:

min
𝑤𝜏

1

𝑁

𝑁∑

𝑖=1

C(𝑓𝜏 (𝑥
(𝑛)
𝜏 ;𝑤𝜏), 𝑦

(𝑛)
𝜏) + 𝜆R(·) (4)

where 𝑓𝜏 is a neural network function, C(·) is a cost function (e.g.,

cross-entropy) and R(·) is an optional regularization function with

hyperparameter 𝜆.

2.2 Parameter-shared Tuning

Although task-specific fine tuning approach achieves good perfor-

mance, the updating of all parameters in large-scale PLMs and stor-

ing all fine-tuned models still exhibits prohibitive adaptation costs.

pre-trained
model

Task-specific
fine-tuning

Freeze-bot Adaptor[20] Diff pruning[14]

updated after task-
specific training

remain as pretrained

Parmeter-shared tuning

Figure 3: Pre-trained model and different weight tuning

methods.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Z. Fan, Q. Zhang, P. Abillama, S. Shoouri, C. Lee, D. Blaauw, H-S. Kim and D. Sylvester

Input Feature
Matrix (N×H)

num_
heads

SoftM
ax

Multi-Head Attention

Output Feature
Matrix (N×H)

Attention
Output (N×H)

Key(N×H) Queue(N×H) Value(N×H)

Context(N×H)

W
FF

2(
4H

×H
)

W
FF

1(
4H

×H
)

WK(H×H) WQ(H×H) WV(H×H)

N×N

WA(H×H)

G
EL

U

La
ye

r N
or

m
.

Fully-Connected

Fully-Connected

BERT Layer

Layer Norm.

Input Tokens

Embedding Layer

BERT Layer 1

BERT Layer K

Classifier/Q&A/NER...

Input Tokens

Embedding Layer

BERT Layer 1

BERT Layer K

Classifier/Q&A/NER...

Configurations:
N = # of sentence tokens
BERTbase model:
H = 768, num_heads = 12, K=12
BERTlarge model:
H = 1024, num_heads = 16, K=24

Configurations:
N = # of sentence tokens
BERTbase model:
H = 768, num_heads = 12, K=12
BERTlarge model:
H = 1024, num_heads = 16, K=24

Configurations:
N = # of sentence tokens
BERTbase model:
H = 768, num_heads = 12, K=12
BERTlarge model:
H = 1024, num_heads = 16, K=24

BERT Overview

Figure 4: BERT structure overview.

To reduce the memory consumption, parameter-shared tuning is

proposed to only update part of parameters in for downstream tasks.

In traditional transfer learning schemes [30], parameter sharing is

realized by only retraining the last several layers and freezing other

layers. We refer to this method as freeze-bot in Fig. 3. However, re-

cent studies [11, 13] show that freeze-bot leads to intolerably more

than 10% accuracy drop. Adaptor [19] inserts parameter-shared sub-

layers between pre-trained model layers and only updates these

added layers as depicted in Fig 3, which adds 3.6% extra parameters

per task with no accuracy loss. Diff pruning [13] (Fig. 3) uses pre-

trained weights plus sparse delta weights as the new task-specific

weights. Experiments show that it can reduce the amount of extra

parameters to around 0.5% per task with negligible accuracy loss.

2.3 Transformers and Computation Breakdown

Transformer structures have achieved state-of-the-art performance

in various NLP tasks. BERT is one of the most widely adopted

transformer-based structures. Fig. 4 shows the structure of BERT

neural network. There are two main computation types in BERT

layers: fully connected layer (linear layer) and multi-head self-

attention. Previous transformer accelerators [14, 15, 23, 33, 48]

mainly seek to accelerate the multi-head self-attention part since

they consume most of the time in a CPU or GPU when the number

of tokens is large. Fig. 5 shows the number of floating point opera-

tions (FLOPs) breakdown versus number of input tokens. For short

input sequences such as less than 256 tokens, which are often ob-

served in edge scenarios, linear layers occupy over 90% of the total

operation counts. As input sequence token number 𝑁 increases,

the self-attention part becomes more significant since self-attention

computation complexity is 𝑂 (𝑁 2𝐻) while linear layer complexity

is 𝑂 (𝑁𝐻2). Therefore, accelerating fully-connected layers is as sig-

nificant as accelerating self-attention for system efficiency under

edge scenarios, especially when input sentences are not long.

3 TASKFUSION ALGORITHM

3.1 Overview

Challenges mentioned previously show that computation overhead

arises from the non-shareable weights and activations between the

base task and sub-tasks. If both the weights and activations were

Dominated by
fully-connected

Dominated by
self-attention

Figure 5: BERT computation breakdown versus number of

input tokens.

shared, we could save computation by processing only sub-task

specific delta parameters and features that deviate from the base

task. Based on this observation, we propose TaskFusion algorithm,

which is an efficient transfer learning algorithm that combines

weight sharing or freezing, learning-based delta weight pruning,

and learning-based delta activation pruning.

Fig. 6 shows the network structure of BERT in TaskFusion al-

gorithm, which is the same for base task and sub-tasks. We split

the sub-task layers into three parts: totally shared layers (𝑁𝑇𝑆),

partially shared layers (𝑁𝑃𝑆), and non-shareable layers (𝑁𝑁𝑆). In

totally shared layers, weights are kept the same as the base task

(pre-trained model). To describe the algorithm without loss of gen-

erality, we use the same linear layer L example from Fig. 1 (d). Since

the input of a sub-task and the base task is the same (e.g., a sen-

tence), the activation in the totally shared layers can be directly

reused from the base task to sub-tasks without any computation as

in Eq.5:

Totally shared layer L of a TaskFusion sub-task where

L < NTS:

AL+1
sub_T = AL

base ×WL
base = AL+1

base (5)

In partially shared layers, a sub-task weight/activation matrix

equals the base task weight/activation matrix plus a sparse delta

weight/activation matrix. First, layer L of the base task is processed,

Sub-
task

Base
task

To
p-

K

To
p-

K

To
p-

K

Totally Shared Layer
(NTS)

_
L
sub TA

_
L+1
sub TA

L+1
baseA

Top-K
L
baseA _

L
sub TW _
L
sub TW

L
baseA L

baseWBase
task

Sub-taskL
sub _ TW

Partially Shared Layer
(NPS)

Non-shareable Layer
(NNS)

Base task (pre-trained)
weight

Sub-task weight (=base
weight + delta weight)

Activations

Figure 6: TaskFusion algorithm overview: we split BERT lay-

ers into 3 parts: totally shared layers, partially shared layers

and non-shareable layers.

TaskFusion: An Efficient Transfer Learning Architecture with Dual Delta Sparsity for Multi-Task Natural Language Processing ISCA ’23, June 17–21, 2023, Orlando, FL, USA

and then the activation during sub-task processing can be written as

AL
sub_T

= AL
base

+ 𝛿AL
sub_T

, where T stands for TaskFusion. 𝛿Wsub_T

and 𝛿Asub_T are the task-specific delta weight and delta activation

matrices, respectively. The partially shared layer processing can be

written as Eq.6 (also refer to Fig. 1 (d)):

Partially shared layer L of a TaskFusion sub-taskwhere

NTS ≤ L < NTS + NPS:

AL+1
sub_T = AL

sub_T ×WL
sub_T

= (AL
base + 𝛿AL

sub_T) × (WL
base + 𝛿WL

sub_T)

= AL
base ×WL

base + 𝛿AL
sub_T × (WL

base + 𝛿WL
sub_T)

+ AL
base × 𝛿WL

sub_T

= AL+1
base + 𝛿AL

sub_T ×WL
sub_T + AL

base × 𝛿WL
sub_T

(6)

Since 𝛿Wsub_T and 𝛿Asub_T are sparse matrices, it is no longer

necessary to perform a new dense matrix-matrix multiplication

(AL
sub_T

×WL
sub_T

). Instead, the pre-computed base task activation

AL+1
base

can be reused in sub-task computation as shown in Eq. 6.

By this sharing, two sparse-dense matrix-matrix multiplications

(𝛿AL
sub_T

× WL
sub_T

+ AL
base

× 𝛿WL
sub_T

) replace the dense matrix-

matrix multiplication. When 𝛿Asub_T and 𝛿Wsub_T are very sparse,

this replacement can speed up sub-tasks and also reduce energy

consumption. In order to make the output delta activation more

sparse, we propose to select top-K largest absolute deltas and force

the other activation deltas to zero before passing it to next layer:

𝛿AL+1
sub_T = topK (𝛿A

L
sub_T ×WL

sub_T + AL
base × 𝛿WL

sub_T)

In non-shareable layers, activations are not shared but the delta

weight matrix 𝛿Wsub_T is trained to be sparse via parameter-shared

tuning to lower memory storage requirements. We do not constrain

activations and therefore no computation savings are achieved in

non-shareable layers. The computation of non-shareable layers can

be written as the following:

Non-shareable layer L of a TaskFusion sub-task where

L ≥ NTS + NPS:

AL+1
sub_T = AL

sub_T × (WL
base + 𝛿WL

sub_T)

= AL
sub_T ×WL

sub_T

(7)

In summary, memory savings are achieved in all three types of

layers whereas computation savings are attained in totally shared

layers and partially shared layers. To maximize the speed-up and

energy saving, sparsifying 𝛿Wsub_T and 𝛿Asub_T as much as pos-

sible remains a challenge. In the following sections, we introduce

our learning-based delta weight and activation pruning methods to

increase the sparsity.

3.2 Learning Sparser Delta Weights and Delta
Activations

Diff pruning [13] uses regularization on delta weights between

the pre-trained model and fine-tuning model to sparsify the delta

weight matrix. Similarly, we apply regularization to both delta

weights and delta activations between the base task and sub-tasks.

Here, we change the notation for simplicity, only considering par-

tially shared layers. Suppose the base task weight is𝑤𝑝 and activa-

tion is 𝑎𝑝 , the sub-task weight is𝑤𝜏 and activation is 𝑎𝜏 . We define

the delta weight and delta activation as:

𝛿𝑤𝜏 = 𝑤𝜏 −𝑤𝑝 , 𝛿𝑎𝜏 = 𝑎𝜏 − 𝑎𝑝

In order to make 𝛿𝑤𝜏 and 𝛿𝑎𝜏 sparse, we modify the optimization

loss function from Eq.4 to:

min
𝑤𝜏

1

𝑁

𝑁∑

𝑖=1

C(𝑓𝜏 (𝑥
(𝑛)
𝜏 ;𝑤𝜏), 𝑦

(𝑛)
𝜏) + R𝑤 (𝛿𝑤𝜏) + R𝑎 (𝛿𝑎𝜏) (8)

Since diff pruning has proven the effectiveness of ℓ0 regularization
on sparsifying 𝛿𝑤𝜏 , we use the same method to learn the sparse

𝛿𝑤𝜏 by using:

R𝑤 (𝛿𝑤𝜏) = 𝜆𝑤

𝐿∑

𝑙=0

| |𝛿𝑤𝑙
𝜏 | |0 = 𝜆𝑤

𝐿∑

𝑙=0

𝑑∑

𝑖=1

1{𝛿𝑤𝑙
𝜏,𝑖 ≠ 0} (9)

where L equals the total number of layers and 𝜆𝑤 is the regulation

coefficient. Since Eq. 9 is non-differentiable, we also follow the ap-

proach in [25] and [13] for gradient-based learning using a relaxed

mask vector. Once a binary mask is learned, we multiply this mask

with dense delta weight matrix to make 𝛿𝑤𝜏 sparse.

Interestingly, the same approach does not extend well to sparse

delta activation learning. Since delta activation 𝛿𝑎𝜏 also depends

on the variable input 𝑥𝜏 , it is hard to learn a fixed deterministic

binary mask applicable to all inputs. ℓ1 regularization (also known

as Lasso) [46] has been proven effective for regularizing parameters

to generate a Laplacian-like distribution, increasing the amount of

small values. Therefore, we use ℓ1 regularization on delta activations
during training to shape the distribution of 𝛿𝑎𝜏 to have a higher

probability of small values. The proposed regularization function

of 𝛿𝑎𝜏 is written as:

R𝑎 (𝛿𝑎𝜏) =
𝐿∑

𝑙=0

𝜆𝑙𝑎 | |𝛿𝑎
𝑙
𝜏 | |1 =

𝐿∑

𝑙=0

𝜆𝑙𝑎

𝑑∑

𝑖=1

|𝛿𝑎𝑙𝜏,𝑖 | (10)

where 𝜆𝑙𝑎 is the layer-wise regularization hyperparameter. We set

𝜆𝑙𝑎 (> 0) only for partially shared layers. For the other layers, we

set 𝜆𝑙𝑎 = 0. As a result, absolute values of 𝛿𝑎𝜏 can be reduced for

partially shared layers, but they will not decrease to zero. Therefore,

we only select top-K largest absolute values of 𝛿𝑎𝜏 during inference.
Sparsity of 𝛿𝑎𝜏 is controlled by choosing the K value.

Fig. 7 shows the 𝛿𝑎𝜏 distribution of BERTbase model 4th and

5th layer on sentiment analysis (SST-2) task with (a) no regular-

ization, (b) ℓ1 regularization, and (c) top-K selection after (b) (top

20% selected). Note that by using ℓ1 regularization, delta activa-

tion distribution is significantly narrowed from Gaussian-like to

Laplacian-like. The overall absolute value of delta activation also

decreases. After top-K selection, small values are set to zero and

only K largest values remain. This produces high sparsity for 𝛿𝑎𝜏
and enables sparse matrix multiplications to replace dense multi-

plications.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Z. Fan, Q. Zhang, P. Abillama, S. Shoouri, C. Lee, D. Blaauw, H-S. Kim and D. Sylvester

(a) No regularization

(b) Delta activation L1 regularization

(c) Delta activation L1 regularization + Top-K pruning

Layer 4

Layer 4

Layer 4

Layer 5

Layer 5

Layer 5

Figure 7: Delta activation distribution of BERTbase 4
th and 5th

layer for the sentiment analysis (SST-2) task. x axis: delta

activation value. y axis: density.

3.3 Combine with Previous Single-task
Acceleration

Many efficient single-task transformer acceleration methods have

been proposed, such as approximate attention [14, 15], quantization

[51], token pruning [48], attention map pruning [23, 45], low-rank

approximation [33]. Our algorithm is orthogonal to them and can

combine with them to obtain more gains for multi-task processing.

In this work, we choose to augment TaskFusion with token pruning

(SpAtten) [48], as an example to demonstrate that adaptability. SpAt-

ten prunes less important tokens in a cascaded way to reduce the

activation matrix dimension and speed up. When combining Spat-

ten, the base task computation is identical to the original TaskFusion

without using token pruning. For sub-tasks, the token pruning is

implemented in all layers by pruning small attention score tokens.

Fig. 8 compares activation patterns in partially shared layers with

and without combining SpAtten. Task-specific fine-tuning does not

enable any activation sharing while TaskFusion does, making delta

activation sparse in the partially shared layers. In SpAtten, token

“ISCA" and “is" are identified as unimportant tokens. Therefore, only

“fun" related activation is left and passed to the next layer. By adding

TaskFusion, base task and sub-tasks partially share “fun" activations,

with the tokens “ISCA" and “is" still pruned out. This combination

makes the delta activation smaller and also sparser. Experiments

show only negligible accuracy loss with this combination (Sec. 5).

4 TASKFUSION HARDWARE ARCHITECTURE

4.1 Overview

Existing transformer accelerators cannot efficiently support our

TaskFusion algorithm, mainly due to four challenges:

• Handling irregular sparse matrix operations

ISCA
is

fun

Pre-trained (base task)

ISCA
is

fun

SpAtten + TaskFusion
(Sub-task)

δISCA
δis

δfun

ISCA
is

fun

SpAtten + TaskFusion
(Sub-task)

δISCA
δis

δfun

ISCA
is

fun

Task-specific fine-tuning
(Sub-task)

δISCA
δis

δfun

ISCA
is

fun

Task-specific fine-tuning
(Sub-task)

δISCA
δis

δfun

ISCA
is

fun

TaskFusion
(Sub-task)

δISCA
δis

δfun

ISCA
is

fun

TaskFusion
(Sub-task)

δISCA
δis

δfun

ISCA
is

fun

SpAtten
(Sub-task)

δISCA
δis

δfun

ISCA
is

fun

SpAtten
(Sub-task)

δISCA
δis

δfun

Base task shared activationBase task shared activation
Sub task private activationSub task private activation
Zero valuesZero values
Non-zero valuesNon-zero values

Base task shared activation
Sub task private activation
Zero values
Non-zero values

Figure 8: Partially shared layer activation pattern comparison

between task-specific fine-tuning, TaskFusion, SpAtten, and

SpAtten + TaskFusion.

• Memory architectural support for sparse delta matrices

• Multi-task scheduling for data reuse and reduced off-chip

memory accesses

• Joint acceleration of self-attention layers and fully-connected

layers.

To tackle these challenges, TaskFusion proposes a heterogeneous

architecture that consists of a dense core, a sparse core, and an

attention core to accelerate different computation patterns. We de-

sign a new on-chip memory architecture supporting delta weights

and delta activations. We also propose a novel multi-task scheduler

to efficiently orchestrate tasks.

4.2 Heterogeneous Architecture

Fig. 9 shows the proposed TaskFusion architecture. For the base task

and non-shareable layers of sub-tasks, weights and activations are

dense. Hence for those, the dense core is used to compute matrix

multiplications for Queue (Q), Key (K), Value(V) and feed-forward

networks (FFN). For the dense core, we use an output stationary

TPU-like systolic array architecture[20] shown in Fig. 9 �. Each PE

receives weights from the left and activations from the top, com-

putes multiplication and addition (MAC) operations, and stores the

partial sum to the PE-local register. Then the weights and activa-

tions are passed in a systolic manner to neighbor PEs through each

PE’s right and bottom connections. After a chunk of computation

is finished, partial sums are sent to the accumulation memory for

accumulation with previous partial sums. Finally, the outputs are

sent to non-linear units like GELU and layer normalization, or di-

rectly sent to the attention core for attention operations. The base

task activations are stored in the base task activation memory and

attention core’s K, Q, V memory.

After K, Q and V being computed by the dense core , atten-

tion computation starts in the attention core shown in Fig. 9 �.

The attention core computes QK multiplication, SoftMax, attention

score (S) and V multiplication, etc., to obtain the attention output

(A). There are two reasons for not reusing computation units be-

tween attention core and dense core: 1) the computation pattern

is highly different between fully-connected matrix computation

and attention matrix computation, where the latter requires matrix

transposition, SoftMax, normalization, etc. and 2) using two cores

enables pipelining between Q generation and QK multiplication,

which reduces overall latency. In our design, Keymemory and Value

TaskFusion: An Efficient Transfer Learning Architecture with Dual Delta Sparsity for Multi-Task Natural Language Processing ISCA ’23, June 17–21, 2023, Orlando, FL, USA

W
 B

uf
fe

r

Key
Memory

Base
Task

Activation
Memory

Sub-task
Delta

Activation
Memory

A Buffer

Top-K
Engine

A
Bu

ffe
r

W
 B

uf
fe

r

Ac
cu

m
ul

at
io

n
M

em
or

y

Non-Linear
Units

Sparse
Encoder

Queue
Buffer

Value
Memory

SoftMax Unit

SpAtten Top-K
Token Pruning

MAC
Line

Att. Output Buffer

Attention CoreDense Core

Sparse CoreO
ff-

ch
ip

 D
R

AM
Act. Memory

Multi-tasking Scheduler

MAC Line

Base
Task

Weight
Memory

M
U

X

Sub-task
Delta

Weight
Memory

Sp
ar

se
-D

en
se

 A
dd

iti
on

Weight Memory
Base
Task

Weight
Memory

M
U

X

Sub-task
Delta

Weight
Memory

Sp
ar

se
-D

en
se

 A
dd

iti
on

Weight Memory

Subtraction

Addition

Ac
cu

m
ul

at
io

n
M

em
or

y

Bl
k

1
Bl

k
2Bl

k
3

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

Figure 9: TaskFusion architecture.

memory are both 192KB for storing up to 128 token features. More-

over, with potential combination of TaskFusion and other single-task

acceleration methods, the attention core may be replaced. Still tak-

ing SpAtten as an example, we add its top-K pruning block after the

SoftMax unit (dashed box in Fig. 9 �) for on-the-fly token pruning.

Attention core is used for both the base task and sub-tasks. The

attention result of the base task is directly stored in the base task

activation memory. For sub-tasks, base task attention results are

first subtracted from sub-task results, then the delta results are

sparsified by choosing the top-K largest and stored in a bit-map

encoded format in the delta activation memory. These hardware

supports are implemented in the activation memory block (Fig. 9

�).

During the execution of partially shared layers in sub-tasks, we

use the sparse core to handle irregular sparsity and accelerate the

two sparse matrix multiplications in Eq.6 since the non-zero ele-

ments in 𝛿Wsub_T and 𝛿asub_T are chosen dynamically based on

their magnitudes. There have been many sparse DNN accelerators

[12, 16, 18, 31, 32, 40, 43, 44, 53, 54] in recent years to accelerate

sparse matrix multiplications. We choose SIGMA-like [32] archi-

tecture (Fig. 9 �) since it has the advantage of handling irregular

matrix sizes (when combining Spatten) as well as irregular matrix

sparsities, thanks to SIGMA’s flexible and configurable distribu-

tion network and reduction network. In totally shared layers and

non-shareable layers, the sparse core is power-gated to save power

consumption since no sparse computation is needed. In partially

shared layers, the sparse core first computes 𝛿Asub_T × Wsub_T.

Base task and sub-task delta weights are read from the base task

weight memory and sub-task delta weight memory, respectively,

and added together using sparse-dense addition units, then passed

to the sparse core’s W buffer. Delta activations are read from the

sub-task delta activation memory and stored in the A buffer. Af-

ter sparse-dense matrix multiplication, results are stored in the

accumulation memory, waiting for the second sparse matrix mul-

tiplication Abase × 𝛿Wsub_T that reads 𝛿𝑊𝑠𝑢𝑏_𝑇 from the sub-task

delta weight memory and𝐴𝑏𝑎𝑠𝑒 from the base task activation mem-

ory. The final results are first added to the base task activation, then

go through non-linear units. Delta activations are obtained by sub-

tracting the post-GELU/LayerNorm base task activations from the

resulted activations. Here, we only store the pre-GELU/LayerNorm

base task activations and LayerNorm coefficients to decrease the on-

chip memory overhead as well as off-chip memory accesses. Before

subtraction, we on-the-fly redo GELU or LayerNorm (use stored

coefficients) on the stored base task activations. Finally, we use the

Top-K engine to sparsify delta activations, and store the encoded

sparse delta matrix in the sub-task delta activation memory.

For a prototype accelerator, we use 16 bit floating point multipli-

ers and adders in MAC PEs without losing accuracy. We instantiate

256 multipliers in the dense core and sparse core, and 128 multi-

pliers in the attention core for pipelined attention computation,

totaling 640 multipliers. However, TaskFusion is salable with a dif-

ferent number of multipliers. For sensitivity study, we instantiated

a small version with total 160 multipliers and a medium version

with total 320 multipliers. Detailed evaluation results are shown in

Sec.5.

4.3 Memory architecture

First, we separate the base task memory and sub-task delta memory

to increase the memory bandwidth. This enables parallel execution

of the base task and sub-task. The weight memory system contains

the base task weight memory, sub-task delta weight memory and

sparse-dense addition unit. For the base taskweightmemory, we use

a circular-buffer-like architecture, which contains three memory

blocks as Fig. 9 � shows. Each memory block is 288KB and this

relatively large size is determined to decrease the off-chip memory

access. Each memory block rotates its role from base task weight

supply, sub-task weight supply, and weight pre-loading from off-

chip. With our scheduling method, this design can reduce the off-

chip pre-trained (base task) model weight access to only once to

perform all tasks in our experiments.

For the sub-task delta weight memory, we use a bit-map (binary

mask) to encode the delta weight, which aligns with the SIGMA

design. The sub-task delta weight memory size is set to 256KB.

Since we need to calculate𝑊 𝐿
𝑏𝑎𝑠𝑒

+ 𝛿𝑊 𝐿
𝑠𝑢𝑏_𝑇

in Eq. 6, we design a

sparse-dense addition unit in the weight memory system. First, the

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Z. Fan, Q. Zhang, P. Abillama, S. Shoouri, C. Lee, D. Blaauw, H-S. Kim and D. Sylvester

sub_t1/t2KW
sub_t1/t2VWbaseQW

baseVW

Base Task Weight Mem

Block 3
(288KB)

Block 1
(288KB)

Block 2
(288KB)

Dense
Core

Sparse
Core

From DRAM
baseFFN1W

baseQW
baseVW

Base Task Weight Mem

Block 3
(288KB)

Block 1
(288KB)

Block 2
(288KB)

Dense
Core

Sparse
Core

From DRAM
baseFFN1W

baseKW

Base Task Weight Mem

Block 1
(288KB)

Block 2
(288KB)

Block 3
(288KB)

Dense
Core

Sparse
Core

baseQW

baseVW

L L T
base baseKQ

L
baseK L

baseV L
baseQ

L L
base baseS VBase Task

Sub-tasks L
t1K L

t2K L
t2VL

t1V

Attention
core busy
Attention
core busy

Dense
core busy
Dense
core busy

Sparse
core busy
Sparse
core busy

From DRAM

Sub
Task

Weight
Mem

256KB

+

Sub
Task

Weight
Mem

256KB

+

Figure 10: TaskFusion weight memory architecture and con-

trol flow.

non-zero delta weight positions are identified and stored while com-

puting AL
base

× 𝛿Wsub_T. The sparse-dense addition unit then uses

the stored non-zero delta weight positions to add delta weights with

base weights. The sparse-dense addition unit contains 32 adders.

The detailed weight memory micro-architecture and control flow

are shown in Fig. 10. The base task and sub-tasks are scheduled in a

pipelined manner following the schedule shown in Sec. 4.4. When

the dense core is computing V (Fig. 10 left), V weights (WVbase
) are

read from block1, and the sparse core generates sub-task K. The

base K weights (WKbase
) are read from block2, which are added

to sub-task (t1 or t2) delta K weights (𝛿WKsub_t1/t2
) and sent to the

sparse core. Meanwhile, block3 receives the next layer’s weight

(WQbase
) from DRAM. For the next stage (Fig. 10 right), the sparse

core can reuse WVbase
from block1. Since WKbase

is no longer useful,

block2 is updated with next layer’s weights (WFFN1base). This rota-

tion eliminates on-chip weight access conflicts and also minimizes

off-chip weight accesses from DRAM.

The activation memory system (Fig. 9 �) consists of base task ac-

tivationmemory, sub-task delta activationmemory, addition/subtraction

units, GELU and layer normalization units, top-K engine, and a

sparse data encoder. We use a bit-map to encode the sparse sub-

task delta activation. Each addition/subtraction unit contains 32

adders/subtractors. We use top-K engine to determine the K-th

largest value and generate a bit-map by comparing elements with

a pre-defined threshold. The resulted sparse activation is encoded

by the sparse encoder to be stored in the sub-task delta activation

memory. In our design, we set base task activation memory to be

576KB and sub-task delta activation memory to be 256KB. If there

are many sub-tasks executing at the same time, off-chip memory

access is needed.

4.4 Task Scheduling

In order to maximally utilize computation resources and reduce

off-chip memory access in multi-task processing, we propose a

TaskFusion scheduling scheme depicted in Fig. 11, where we com-

pare the processing flowwith and without TaskFusion scheduling. A

conventional processing flow performs sub-tasks one-by-one after

the base task processing, which is costly because 1) all base task

activations need to be stored off-chip for later sub-task processing,

Sub-task ID #TS #PS

L L T
base baseKQ

L
baseK L

baseV L
baseQ

L L
base baseS V

L
baseA L

baseFFN1 L
baseFFN2

TQK TQK
SV SV

Base Task (base) Sub-task 1 (t1) Sub-task 2 (t2)

Base Task (base)

t1

t2

t1

t2

Layer L Multi-task Processing

1
2
...

Sub-task Context Table

(a) w/o
Scheduling:

(b) w/
Scheduling:

Base Task

Sub-tasks

L
t1K L

t2K L
t2VL

t1V L
t1Q L

t2Q L
t2AL

t1A L
t1F1 L

t2F1 L
t2F2L

t1F2

L 1
baseK

Dense core busy
Attention core busy
Sparse core busy

Figure 11: TaskFusion scheduling scheme: (a) Naive schedul-

ing, where sub-tasks are executed one by one after the base

task. (b) Proposed scheduling, which pipelines layer execu-

tion of the base task and sub-tasks to reduce latency and

off-chip memory access.

2) pre-trained weights and base task activations are reloaded from

off-chip every time a new sub-task is performed and 3) the compu-

tation cores are under-utilized since the dense core and sparse core

are not used at the same time. Our proposed scheduling addresses

those problems. First, sub-task information (e.g., number of totally

and partially shared layers) is stored in a sub-task context table.

When base task processing reaches one of the sub-tasks’ partially

shared layers, the related sub-task processing starts. Multiple sub-

tasks can be scheduled to execute together as the example layer

breakdown shown in Fig. 11. The attention computation is pipelined

with a queue for both base task and sub-task based on the approach

in [10]. Moreover, the sub-task processing is pipelined with the

base-task processing for sharing the base task weights and activa-

tions which are necessary for TaskFusion. This pipelining can hide

the latency of partially shared layers of sub-tasks behind base task

processing. When the total latency of multiple sub-tasks exceeds

that of the base task, the scheduler stalls base task processing to

wait for sub-tasks to finish.

With our dedicated memory architecture and optimized sched-

uler, almost all coordination overhead between different computing

and memory blocks can be eliminated. The complexity of Task-

Fusion scheduling is low. Hence it can be implemented using a

lightweight low-power RISC processor such as Cortex-M0 with

32KB SRAM for the scheduler’s instruction and data memory.

5 EVALUATION

5.1 Evaluation Setup

5.1.1 Workloads. Since BERT has shown great potential on various

NLP applications, we use BERT as our backbone model and tested it

with two configurations: BERTbase and BERTlarge. In our evaluation,
we use 10 sub-tasks in total. Among them, 8 tasks are from the

GLUE dataset [47], including linguistic acceptability (CoLA [49]),

sentiment analysis (SST-2 [42]), natural language inferences (RTE

[6], QNLI [35], MNLI [50]), sentence similarity detection (MRPC

[8], QQP, and STS-B [4]). Since those are all sentence classification

tasks, we add two non-classification tasks: question-answering

(SQUAD [36]) and named entity recognition (NER [39]) to show

TaskFusion: An Efficient Transfer Learning Architecture with Dual Delta Sparsity for Multi-Task Natural Language Processing ISCA ’23, June 17–21, 2023, Orlando, FL, USA

TaskFusion’s generalizability. All tasks share the same BERTbase /
BERTlarge pre-trained model for the masked sentence and next-

sentence prediction task [7] as the base task. We do not train all

sub-tasks together since we lack a common training dataset for

all 10 sub-tasks. Instead, we train each sub-task separately using

each sub-task’s dataset (based on the pre-trained model for the base

task).

5.1.2 Hardware Settings. For latency estimation, we use an open-

source systolic-array simulation tool (Scale-Sim [37]) for dense core

cycle-accurate simulations. We use an open-source SIGMA sim-

ulator (STONNE [28]) for sparse core cycle-accurate simulations.

For the attention core, we build our own cycle accurate model for

both traditional attention computation and SpAtten. For energy

simulation, we use our own dense core and attention core Verilog

implementations. We use SIGMA’s open-source RTL [32] for sparse

core energy simulations. All Verilog designs are synthesized us-

ing Synopsys Design Compiler in TSMC 22nm ULL technology at

the frequency of 1GHz and we use PrimePower with FSDB wave-

form to estimate the energy consumption. For memory energy

consumption, we use ARM 22nm memory compilers to generate

the memories we need. We use Cortex-M0 as a multi-task scheduler

to control computing cores and memory blocks. For end-to-end pro-

cessing latency, we build a system-level cycle-accurate model that

considers the proposed scheduling and Cortex-M0 control latency.

For system energy consumption, we add different cores’ computa-

tion energy, memory access energy, and Cortex-M0 control energy

together to estimate the overall energy of TaskFusion.

5.2 Algorithm Evaluation

Wemainly compare 4 different algorithms. The baseline algorithm is

the conventional task-specific fine-tuning scheme, without sharing

between the base task and sub-tasks. The SpAtten algorithm stands

for the token-pruning method proposed in [48]. It employs token

pruning to reduce the number of tokens during inference, but it

also does not enable sharing between the base task and sub-tasks.

The TaskFusion algorithm is our method with delta weight and

delta activation pruning, which enables parameter and activation

dual sharing between the base task and sub-tasks. The SpAtten +

TaskFusion algorithm is the combination of our method with token

pruning as discussed in Sec. 3.

For each sub-task in TaskFusion, we set the number of totally

shared layers, the number of partially shared layers, delta weight

sparsity, and delta activation sparsity as extra hyperparameters. For

SpAtten and SpAtten + TaskFusion, we set the first 3 layers to keep

100% tokens and set a hyperparameter for the final layer’s token

keep rate. The token keep rates for remain layers linearly decrease

from 100% to the token keep rate of the final layer.

We use a three-step training scheme adapted from diff prun-

ing [13] with the addition of delta activation pruning. First, ℓ0
regularization on delta weights and ℓ1 regularization on delta acti-

vations are added to the loss function. Each input batch (a batch

of sentences) goes through the pre-trained model and we store

all intermediate activations as base activations. Then during the

forward-propagation of the sub-task model training, we use those

base activations as the reference to obtain sub-task delta activa-

tions. From those, we only keep partial delta activations with the

largest absolute values based on the pre-set delta activation sparsity

(10% - 20%) in partially shared layers. In non-shareable layers, 𝑙1
regularization coefficient (𝜆𝑙𝑎 , refer to Eq.10) is set to 0 and no delta

activation pruning is attempted. Training a few epochs with those

configurations provides the first stage training results. In the next

stage training, we only keep a small portion (≤ 2%) of the largest

delta weights in partially shared layers and non-shareable layers to

attain the pre-set delta weight sparsity. In the final stage training,

we only update the non-zero delta weights at fixed positions with

the same delta activation pruning strategy as in the first step. We

enumerate different combinations of hyperparameters until we find

a good combination with negligible accuracy drop.

Fig. 12 shows the accuracy and computation comparison of 2

model structures (BERTbase and BERTlarge) on 10 sub-tasks. For

BERTbase model, TaskFusion and SpAtten has negligible accuracy

loss (around 0.5% - 0.8%) on average (AVG). SpAtten + TaskFusion

has larger accuracy loss (around 1.7%) but saves more computation,

enabling a reasonable trade-off between accuracy and complexity.

The same conclusion can be drawn for BERTlarge. TaskFusion can

save 65.2% / 62.4% FLOPs on average for BERTbase / BERTlarge while
SpAtten+TaskFusion increases FLOPs saving to 73.1% / 69.1% for

BERTbase / BERTlarge compared to the baseline.

We conducted additional experiments to show the benefits of ℓ1
regularization on delta activations. Fig. 13 shows the accuracy of

sub-task SST-2 and QNLI in TaskFusion (no SpAtten) with varying

layer-wise ℓ1 regularization coefficients 𝜆𝑙𝑎 (refer to Eq.10) when

the target delta activation sparsity is set to 20%. 𝜆𝑎 = 0 means there

is no ℓ1 penalty on delta activations. BERTbase model is used in

this experiment. The red horizontal dotted line is the baseline task-

specific fine-turning accuracy and the gray dotted line is drawn

at 1% accuracy drop. Results show that removing ℓ1 regularization
causes large accuracy drop (> 2%). Using a small ℓ1 regularization
coefficient improves accuracy. However, when 𝜆𝑎 is too large, ac-

curacy decreases. In our training for different sub-tasks, we set 𝜆𝑎
as a hyperparameter and choose the value that obtains the best

accuracy for each sub-task.

In order to show the generality of our methods, we also test

TaskFusion algorithm on another transformer model RoBERTa [24]

with different sub-tasks and associated datasets. The results are

shown in Table 1. TaskFusion achieves 65.8% number of FLOPs

reduction on average for RoBERTa tasks with less than 1% average

accuracy loss. This shows that TaskFusion can be generalized to

multiple transformer models including BERT and RoBERTa.

Table 1: Accuracy and computation comparison between base-

line and TaskFusion algorithm on RoBERTabase

MRPC STS-B RTE SST-2 QNLI MNLI AVG
Baseline Acc. 92.2 90.8 80.1 94.2 91.9 87.8 89.5

TaskFusion Acc. 91.3 89.3 78.5 94.0 91.7 86.8 88.6
#FLOPS reduction 54% 59% 64% 72% 69% 76% 65.8%

5.3 Comparison with Baseline Design

5.3.1 Baseline Description. Hardware evaluation of this work first

considers the one-base-one-sub-task scenario, where there is

only one sub-task and we calculate latency and energy efficiency

for only that sub-task. We compare four different architectures:

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Z. Fan, Q. Zhang, P. Abillama, S. Shoouri, C. Lee, D. Blaauw, H-S. Kim and D. Sylvester

CoLA MRPC STS-B RTE SST-2 QNLI QQP MNLI SQUAD NER AVG
0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

N
orm

alized #FLO
Ps0.0

0.2

0.4

0.6

0.8

1.0

CoLA MRPC STS-B RTE SST-2 QNLI QQP MNLI SQUAD NER AVG
0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

N
orm

alized #FLO
Ps0.0

0.2

0.4

0.6

0.8

1.0

86
.9

1 85
.7

1
86

.0
2

84
.5

2

(a) BERT-base

Baseline SpAtten TaskFusion SpAtten+TaskFusionSpAtten+TaskFusionBaseline SpAtten TaskFusion SpAtten+TaskFusionSpAtten+TaskFusion

84
.4

9 84
.0

3
83

.7
6

82
.7

1

Normalized #FLOPs

(b) BERT-large

Figure 12: Accuracy (bars) and computation (number of FLOPs, lines) comparison between baseline, SpAtten, TaskFusion and

SpAtten + TaskFusion algorithms on 10 sub-tasks and 2 pre-trained models. The average accuracy and average number of

FLOPs are shown in the AVG bars.

0 2 4 6 8
0.86

0.88

0.90

0.92

0 2 4 6 8
0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy

SST-2 QNLI

baseline
accuracy

baseline
accuracy-1%

TaskFusion
accuracy

0.918
0.908

0.916

0.902

0.907

0.8970.899

0.883

11 regularization coefficient ()l
a

810810

Figure 13: Accuracy comparison with different ℓ1 regulariza-

tion coefficient 𝜆𝑙𝑎 . 𝜆
𝑙
𝑎 = 0means there is no ℓ1 penalty on delta

activations.

baseline, SpAtten, TaskFusion, and SpAtten + TaskFusion. The base-

line architecture only contains dense and normal attention cores,

without storage support for base task activations. Therefore there

is no data sharing between the base task and sub-task. The sub-task

needs to be calculated after the completion of base task. The SpAt-

ten architecture enables on-the-fly token pruning by adding top-K

pruning units to the attention core, which decreases the activation

matrix (K, Q, V, attention, etc.) sizes and speeds up processing. How-

ever, SpAtten architecture cannot support weight and activation

sharing between the base task and sub-tasks. TaskFusion is based on

the architecture shown in Fig. 9, which contains dense, sparse, and

attention cores as well as other computation and memory units to

support data sharing between the base task and sub-tasks. SpAtten

+ TaskFusion architecture combines the two by adding the SpAtten

top-K token pruning units to the attention core while keeping the

support for data sharing.

5.3.2 Performance Comparison. Fig. 14 (a) and (b) show the la-

tency comparison between the above four architecture settings for

BERTbase and BERTlarge. The average sub-task speed up with Task-

Fusion is 2.85× for BERTbase and 2.69× for BERTlarge. The speed-up
is mainly from layer-skipping in totally shared layers (contributes

around 35%) and sparse computation in partially shared layers (con-

tributes around 65%). Moreover, with SpAtten token pruning, the

speed-up is around 3.55× for BERTbase and 2.96× for BERTlarge
compared to only using SpAtten, and 4.16× for BERTbase and 3.35×

for BERTlarge compared to the baseline architecture.

Fig. 14 (c) and (d) show the energy efficiency comparison for

BERTbase and BERTlarge. The energy savings are from computation-

skipping in totally shared layers, and sparse computation in par-

tially shared layers. TaskFusion increases the energy efficiency by

1.55× – 2.43× (average 2.05×) for different tasks compared to the

baseline for the BERTbase case. For the BERTlarge case, the energy
efficiency is increased by 1.69× – 2.77× (average 2.04×). By adding

SpAtten, the energy efficiency is boosted to 2.79× – 2.94× compared

to the baseline architecture. The energy efficiency gain is smaller

than the speed-up rate since the sparse core consumes more power

and there are other overheads such as top-K selections.

5.3.3 Area and Energy Breakdown. Fig. 15 shows the area and en-

ergy breakdown for the TaskFusion architecture. The energy break-

down is different for each sub-task, thus the numbers shown in

Fig. 15 are the average numbers from all sub-tasks. Three major

computation cores consume nearly 90% of total energy consump-

tion. "Others" refers to the additional overhead incurred by top-K

selection, addition/subtraction due to non-linear functions and

multi-task scheduling.

5.3.4 Scheduling Overhead. As mentioned in Sec.4.4, the proposed

memory micro-architecture design and pipelined layer execution

eliminate most of the scheduling overhead. Therefore, a lightweight

low-power RISC processor (e.g., Cortex-M0with 32KB SRAM) is suf-

ficient as the scheduler in TaskFusion design. For a detailed analysis,

the scheduling scheme is implemented as C programs on Cortex-

M0 that include the sub-task context table search, control-register

write, controlling of different computation cores, etc. Behavioral

simulations of the Cortex-M0 RTL (Verilog HDL) running the C pro-

grams show that the proposed scheduling only takes 0.09% of the

end-to-end latency. Synthesis results show that the average power

consumption of Cortex-M0 is only 2.4mW (0.3% of the total power)

and the area overhead is only 0.06mm2 (1.2%) that are negligible

compared to the total system power and area.

5.4 Comparison with CPUs and GPUs

In this section, we compare TaskFusion with 2.4GHz Intel Xeon

Gold CPU and NVIDIA V100 GPU. For a fair comparison, we follow

a similar method as in DOTA [33] to scale up TaskFusion hardware

resources to make it have the same peak throughput as NVIDIA

V100 GPU (14 TFLOPS). We also scale the energy consumption up

accordingly. Fig. 16 (left) shows the average normalized speed-up

and energy efficiency of CPU, GPU, and TaskFusion on BERTbase
and BERTlarge. In summary, TaskFusion achieves 141.4× / 14.2×

TaskFusion: An Efficient Transfer Learning Architecture with Dual Delta Sparsity for Multi-Task Natural Language Processing ISCA ’23, June 17–21, 2023, Orlando, FL, USA

CoLA MRPC STS-B RTE SST-2 QNLI QQP MNLI SQUAD NER AVG
0

2

4

6

N
or

m
al

iz
ed

La
te

nc
y

CoLA MRPC STS-B RTE SST-2 QNLI QQP MNLI SQUAD NER AVG
0

2

4

6

N
or

m
al

iz
ed

La
te

nc
y

Baseline SpAtten TaskFusion SpAtten+TaskFusionSpAtten+TaskFusionBaseline SpAtten TaskFusion SpAtten+TaskFusionSpAtten+TaskFusion

(a) BERT-base (b) BERT-large

1x 1.
17

x 2.
85

x 4.
16

x

1x 1.
13

x 2.
69

x
3.

35
x

CoLA MRPC STS-B RTE SST-2 QNLI QQP MNLI SQUAD NER AVG
0

2

4

 N

or
m

al
iz

ed

En
er

gy
 E

ffi
ci

en
cy

1x 1.
19

x 2.
05

x 2.
94

x

CoLA MRPC STS-B RTE SST-2 QNLI QQP MNLI SQUAD NER AVG
0

2

4

 N

or
m

al
iz

ed
En

er
gy

 E
ffi

ci
en

cy

1x 1.
21

x 2.
05

x 2.
79

x

(c) BERT-base (d) BERT-large

Figure 14: Normalized latency and energy efficiency comparison between baseline, SpAtten, TaskFusion and SpAtten + TaskFu-

sion architectures on 10 sub-tasks and 2 backbone models. The average latency and energy efficiency are shown in the AVG bars.

dense core

sparse core

attention core
others
memory

Area Breakdown Power Breakdown

4.7%66.6%

9.9%
0.9%

13.4%

30.4%

44.9%

10.4%

1.3%

17.6%

Figure 15: Energy and area breakdown of TaskFusion archi-

tecture.

En
er

gy
 E

ffi
ci

en
cy114.92 167.93

16.91 11.55

1

10

100

1000

BERT-base BERT-large

Sp
ee

d-
up

366.53 317.44
119.78 97.67

1

10

100

1000

BERT-base BERT-large

Over Intel Xeon CPU* Over NVIDIA V100 GPU*

8.21
19.83

1

10

100

speed-up energy
efficiency

Over NVIDIA Jetson Nano
GPU ** (BERT-base)

*TaskFusion is scaled to the same peak performance as NVIDIA V100 GPU
**TaskFusion is kept the
original design (640 multipliers)

Figure 16: Speed-up and energy efficiency of TaskFusion over

CPU and GPUs on end-to-end BERT inference.

speed-up and 341.9× / 108.7× higher energy efficiency over CPU /

GPU on average for performing sub-tasks.

Since our design targets edge devices. We compare the original

(without scaling) TaskFusion design (640 multipliers) with an edge

GPU NVIDIA Jetson Nano. Fig. 16 (right) shows TaskFusion can

achieve 8.21× speed-up and 19.83× energy efficiency comparing to

the edge GPU for BERTbase end-to-end execution of sub-tasks.

5.5 Comparison with SOTA Accelerators

Table 2 shows the comparison between TaskFusion and state-of-

the-art single-task transformer accelerators on end-to-end BERT

inference. In order to make fair comparison, we follow the normal-

ization method in [10] to make the total number of multipliers the

same as TaskFusion (640 multipliers), and all designs use the same

clock frequency of 1GHz. We implement SpAtten + TaskFusion for

our architecture in this comparison andwe use end-to-end BERTbase

processing for all tasks. As the performance scales with the sen-

tence length, we use normalized units for throughput (token/s) and

efficiency (token/J) evaluation. The performance comparison for

base task processing is different from that for sub-task processing.

The base task performance in Table 2 of TaskFusion is evaluated

by executing each given (sub) task as a base task without other

sub-tasks that are executed using TaskFusion features. The sub-task

performance in Table 2 is measured only for a sub-task executed

using TaskFusion techniques with a main task when 1) there is

only one sub-task without optimized scheduling, and 2) the sub-

task is executed sequentially after completing the base task. This is

equivalent to the performance of TaskFusion performing infinitely-

many sub-tasks with optimized scheduling, where the base task

latency can be completely amortized. Therefore, the base task and

sub-task performances of TaskFusion in Table 2 can be understood

as the lower bound and upper bound performances of multi-task

NLP systems using TaskFusion. These performance bounds are il-

lustrated in Fig.17, which shows the throughputs of TaskFusion

with different numbers of sub-tasks. Since previous accelerators do

not distinguish sub-tasks from the base task, the performance of

executing sub-tasks in those accelerators is the same as that of the

base task. TaskFusion has a lower base task throughput compared to

prior works because we (optimistically) assume these prior works

can fully utilize all 640 multipliers to maximize their performance.

On the other hand, when TaskFusion executes the base task, only

the dense core (256 multipliers) and attention core (128 multipli-

ers) are utilized while the sparse core (256 multipliers) remains

unused, as we assume fully dense execution of the base task. That

leads to idling 40% of the multipliers. When executing sub-tasks,

as shown in Table 2, TaskFusion achieves 1.48-2.43× speed-up and

1.62-3.77× higher energy efficiency than state-of-the-art single-task

transformer accelerators.

5.6 Design Space Explorations

Table 3 shows the performance comparison between different de-

signs of TaskFusion. We evaluate a small version totaling 160 mul-

tipliers and a medium version totaling 320 multipliers. Smaller

versions with lower power consumption are tailored for resource-

constraint platforms. The throughput of smaller versions show

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Z. Fan, Q. Zhang, P. Abillama, S. Shoouri, C. Lee, D. Blaauw, H-S. Kim and D. Sylvester

Table 2: Comparison with state-of-the-art ASIC based transformer

accelerators

𝐴3[14] SpAtten[48] Sanger[26] DOTA[33] TaskFusion

Technology 40nm 40nm 55nm 22nm 22nm

Frequency 1GHz

of Multipliers 640

Cross-task Sharing No Yes

On-chip Memory [MB] 0.30 0.38 0.50 2.50 2.00

Area [mm2] 10.4 7.75 10.56 2.57 5.13

Task Type base task and sub-tasks have identical performance base task sub-task

Power [W] 1.337 1.165 0.880 0.942 0.635 0.864

Throughput [token/s] 3998.4 4588.4 4953.8 6566.3 2666.5 9737.2

Efficiency [token/J] 2988.7 3938.0 5626.9 6963.4 4195.8 11261.6

Table 3: Comparison with different

size of TaskFusion prototype

Small Medium Large

Technology 22nm

Frequency 1GHz

of Multipliers 160 320 640

Memory [MB] 0.75 1.25 2.00

Area [mm2] 1.82 3.29 5.13

Power [W] 0.275 0.488 0.864

Throughput [token/s] 2742.9 5179.4 9737.2

Efficiency [token/J] 9966.1 10624.1 11261.6

near-linear scaling while their efficiency stay close to that of the

large version. It shows that TaskFusion architecture exhibits a rea-

sonable scalability.

5.7 One-base-multiple-sub-tasks Scenario

We now evaluate a more practical one-base-task-multiple-sub-

tasks scenario, where multiple sub-tasks are executed together

with the same input. We apply our scheduling method to optimize

the latency and energy efficiency. Our evaluation considers a system

with 5 sub-tasks: MRPC, STS-B, QNLI, MNLI, RTE. Fig. 17 (a) shows

the latency comparison with and without TaskFusion scheduling.

The x-axis of Fig. 17 shows scenarios with different number of sub-

tasks, where sub-tasks are added one by one. The base task and all

sub-tasks receive the same input sequence, and we set the number

of input tokens to be 46, which is the average token number in the

above tasks’ training dataset. When there is no scheduling, tasks

are executed one by one as mentioned in Fig. 11 (a). TaskFusion

and SpAtten + TaskFusion architectures reduce the latency of a

single sub-task, thus reduce the total system latency accordingly.

By adding the proposed scheduling, the system latency can be

further reduced. With 1 base task and 5 sub-tasks, the SpAtten +

TaskFusion architecture can reduce 60.3% of the total system latency

(equals to 2.52× system speed-up). By adding scheduling, the total

system latency reduction increases up to 67.7% (equals to 3.10×

system speed-up).

Fig. 17 (b) shows the overall throughput of realistic multi-task

NLP systems vs. the number of sub-tasks. When there is only the

base task, TaskFusion throughput hits the lower bound. As the

number of sub-tasks increases, TaskFusion throughput enhances

and starts to surpass other state-of-the-art approaches, and eventu-

ally approaches the upper bound. Prior works do not distinguish

sub-tasks from the base task, hence the throughput is the same

regardless of the number of sub-tasks. The figure shows that with

more than one sub-task, the throughput of TaskFusion is higher

than SpAtten [48], and with more than two sub-tasks, TaskFusion

outperforms DOTA [33].

6 RELATEDWORKS

Hardware Support for Transformers. Many hardware accelera-

tors have recently been proposed for accelerating transformer-like

neural networks. A3 [14] is the first work to apply approximation

on SoftMax-based attention to speed-up the attention calculation.

base task base task +
1 sub-task

base task +
2 sub-tasks

base task +
3 sub-tasks

base task +
4 sub-tasks

base task +
5 sub-tasks

2000

4000

6000

8000

10000

 SpAtten [48]
 DOTA [33]
 TaskFusion (Ours)

Th
ro

ug
hp

ut
 [t

ok
en

s/
s] TaskFusion on infinite sub-tasks: 9737.2 tokens/s

TaskFusion on 0 sub-task (only base task): 2666.5 tokens/s

(a
) S

ys
te

m
 L

at
en

cy
 [m

s]

base task base task +
1 sub-task

base task +
2 sub-tasks

base task +
3 sub-tasks

base task +
4 sub-tasks

base task +
5 sub-tasks

0

20

40

60

80

100 Baseline
TaskFusion+scheduling

TaskFusion

56
.6

%
51

.9
%

60
.3

%
67

.7
%

53
.0

%
47

.6
%

55
.9

%
64

.1
%

48
.1

%
42

.6
%

52
.6

%
60

.0
%

40
.8

%
36

.8
%

42
.3

%
50

.9
%

29
.2

%
26

.8
%

34
.1

%
36

.1
%

SpAtten+TaskFusion
SpAtten+TaskFusion+scheduling

TaskFusion
TaskFusion
TaskFusion

TaskFusion

(b
) T

hr
ou

gh
pu

t [
to

ke
ns

/s
]

Figure 17: System latency and throughput comparison with

different numbers of sub-tasks. The sub-task adding order

is: MRPC, STS-B, QNLI, MNLI, and RTE.

ELSA [15] also uses approximation computation to speed-up the

transformer computation by using sign random projection. SpAtten

[48] implements on-the-fly token pruning to make the attention

matrix smaller, DOTA [33] uses low-rank linear transformation

to detect and omit unimportant attention connections. Li, et al

[23] adopt a gradient-based learning method to make the attention

map sparse. To further exploit the attention sparsity, Energon [56]

uses a low-precision network to predict the sparsity in attention

map. To eliminate the unstructured sparsity overhead, Sanger [26]

proposes pack-and-split modules to balance the computation. How-

ever, FABNet [10] points out that fully-connected layers occupy

over 80% of operation counts for short input sequences. There-

fore, accelerating the fully-connected like layers is also important.

SpAtten [48] can reduce all matrix sizes (for both attention and

fully-connected layers) and GOBO [51] uses quantization to accel-

erate all parts of transformer. FTRANS [22] and FABNet [10] use

TaskFusion: An Efficient Transfer Learning Architecture with Dual Delta Sparsity for Multi-Task Natural Language Processing ISCA ’23, June 17–21, 2023, Orlando, FL, USA

FFT operations to replace traditional fully-connected operation.

However, the works mentioned above are all for single task acceler-

ation. To our knowledge, TaskFusion is the first work to accelerate

multi-task NLP processing. Our work can also combine with those

single task acceleration methods as mentioned in previous sections.

Multi-task Accelerators. There are few accelerators that aim at

achieving multi-task processing. AI-MT [2] proposes a novel accel-

erator architecture that enables a cost-effective, high performance

multi-neural network execution by fully utilizing the accelerator’s

computation resources and memory bandwidth. PREMA [5] uses

a predictive multi-task scheduler to meet the latency demands of

high priority tasks as well as maintaining high throughput. HDA

[21] proposes a heterogeneous architecture that enables coarser-

grained dataflow flexibility to increase the computation resource

utilization. As opposed to previous multi-task architectures that

seek to support different neural network structures, TaskFusion fol-

lows the task-specific fine-tuning scheme in NLP applications and

uses one network structure (BERT, RoBERTa, GPT, etc.) to perform

all different tasks. Therefore, the previous multi-task architectures

are not optimized for such multi-task NLP processing.

Sparse GEMM Accelerators.We use sparse accelerators in our

heterogeneous architecture to speed up partially shared layers.

There are many sparse GEMM accelerators in the literature [12, 16,

18, 29, 31, 32, 40, 43, 44, 53–55]. Among them, OuterSPACE [29],

ExTensor [18], MatRaptor [43], SpArch [55], Gamma [53] mainly

aim to accelerate very sparse (0.00001-1% density) matrix multi-

plications in recommendation systems, computational chemistry,

internet and social media applications, etc., which is not suitable

for sparse neural networks (1% - 50% density). Among the sparse

DNN-based accelerators, EIE [16] uses outer-product to acceler-

ate sparse matrix vector multiplication, while SparTen [48] uses

inner-product. Tensaurus [44] introduces a new sparse format, CISS,

for sparse related algebra computation. SIGMA [32] uses a highly

flexible dot-product engine and forward adder network to enable

efficient sparse DNN. Griffin [40] describes a systematic approach

to model the sparse architectures and proposes a hybrid architec-

ture to enhance dual sparsity computation. AESPA [31] introduces

a heterogeneous architecture with different sparse sub-accelerators

to support various matrix sizes and sparsity. In our work, we choose

SIGMA [32] for our sparse core architecture.

7 CONCLUSION

This paper presents TaskFusion, which to our knowledge, is the first

software-hardware co-optimized architecture designed for efficient

multi-task NLP. By using ℓ0 and ℓ1 regularization on delta weights

and delta activations, respectively, our algorithm boosts data shar-

ing between base task and sub-tasks, with negligible accuracy loss.

To fully exploit delta sparsity, we propose a novel hardware-aware

sub-task inference algorithm. We also propose TaskFusion architec-

ture and scheduling to further accelerate the sub-task inference in a

system setting. Comparing to previous single-task NLP accelerators,

our method achieves 1.48-2.43× speed-up and 1.62-3.77× energy

efficiency increase on average. In the long run, we believe that the

development of pre-trained models can become more general and

there will be more opportunities in data sharing between base task

and sub-tasks.

REFERENCES
[1] Zaid Alyafeai, Maged Saeed AlShaibani, and Irfan Ahmad. 2020. A survey on

transfer learning in natural language processing. arXiv preprint arXiv:2007.04239
(2020).

[2] Eunjin Baek, Dongup Kwon, and Jangwoo Kim. 2020. A multi-neural network
acceleration architecture. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 940–953.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[4] Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. 2017.
Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual
focused evaluation. arXiv preprint arXiv:1708.00055 (2017).

[5] Yujeong Choi and Minsoo Rhu. 2020. Prema: A predictive multi-task scheduling
algorithm for preemptible neural processing units. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 220–233.

[6] Ido Dagan, Oren Glickman, and Bernardo Magnini. 2005. The pascal recognising
textual entailment challenge. In Machine learning challenges workshop. Springer,
177–190.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[8] Bill Dolan and Chris Brockett. 2005. Automatically constructing a corpus of sen-
tential paraphrases. In Third International Workshop on Paraphrasing (IWP2005).

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[10] Hongxiang Fan, Thomas Chau, Stylianos I Venieris, Royson Lee, Alexandros
Kouris, Wayne Luk, Nicholas D Lane, and Mohamed S Abdelfattah. 2022. Adapt-
able Butterfly Accelerator for Attention-based NNs via Hardware and Algorithm
Co-design. arXiv preprint arXiv:2209.09570 (2022).

[11] Cheng Fu, Hanxian Huang, Xinyun Chen, Yuandong Tian, and Jishen Zhao. 2021.
Learn-to-share: A hardware-friendly transfer learning framework exploiting
computation and parameter sharing. In International Conference on Machine
Learning. PMLR, 3469–3479.

[12] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and TN Vijaykumar.
2019. SparTen: A sparse tensor accelerator for convolutional neural networks. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture. 151–165.

[13] Demi Guo, Alexander M Rush, and Yoon Kim. 2020. Parameter-efficient transfer
learning with diff pruning. arXiv preprint arXiv:2012.07463 (2020).

[14] Tae Jun Ham, Sung Jun Jung, Seonghak Kim, Young H Oh, Yeonhong Park,
Yoonho Song, Jung-Hun Park, Sanghee Lee, Kyoung Park, Jae W Lee, et al. 2020.
Aˆ 3: Accelerating attention mechanisms in neural networks with approximation.
In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 328–341.

[15] Tae Jun Ham, Yejin Lee, Seong Hoon Seo, Soosung Kim, Hyunji Choi, Sung Jun
Jung, and Jae W Lee. 2021. ELSA: Hardware-Software co-design for efficient,
lightweight self-attention mechanism in neural networks. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 692–705.

[16] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: Efficient inference engine on compressed deep
neural network. ACM SIGARCH Computer Architecture News 44, 3 (2016), 243–
254.

[17] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
2022. Masked autoencoders are scalable vision learners. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 16000–16009.

[18] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W Fletcher. 2019. Exten-
sor: An accelerator for sparse tensor algebra. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 319–333.

[19] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In International Conference on
Machine Learning. PMLR, 2790–2799.

[20] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th annual international symposium on computer architecture. 1–12.

[21] Hyoukjun Kwon, Liangzhen Lai, Michael Pellauer, Tushar Krishna, Yu-Hsin Chen,
and Vikas Chandra. 2021. Heterogeneous dataflow accelerators for multi-DNN
workloads. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 71–83.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Z. Fan, Q. Zhang, P. Abillama, S. Shoouri, C. Lee, D. Blaauw, H-S. Kim and D. Sylvester

[22] Bingbing Li, Santosh Pandey, Haowen Fang, Yanjun Lyv, Ji Li, Jieyang Chen,
Mimi Xie, Lipeng Wan, Hang Liu, and Caiwen Ding. 2020. Ftrans: energy-
efficient acceleration of transformers using fpga. In Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design. 175–180.

[23] Zheng Li, Soroush Ghodrati, Amir Yazdanbakhsh, Hadi Esmaeilzadeh, and Mingu
Kang. 2022. Accelerating attention through gradient-based learned runtime
pruning. In Proceedings of the 49th Annual International Symposium on Computer
Architecture. 902–915.

[24] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[25] Christos Louizos, Max Welling, and Diederik P Kingma. 2017. Learning sparse
neural networks through 𝐿_0 regularization. arXiv preprint arXiv:1712.01312
(2017).

[26] Liqiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang, and Yun
Liang. 2021. Sanger: A co-design framework for enabling sparse attention using
reconfigurable architecture. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture. 977–991.

[27] Mary Ann Marcinkiewicz. 1994. Building a large annotated corpus of English:
The Penn Treebank. Using Large Corpora 273 (1994).

[28] Francisco Muñoz-Martínez, José L Abellán, Manuel E Acacio, and Tushar Kr-
ishna. 2021. STONNE: Enabling cycle-level microarchitectural simulation for
dnn inference accelerators. In 2021 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 201–213.

[29] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-
ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge,
and Ronald Dreslinski. 2018. Outerspace: An outer product based sparse ma-
trix multiplication accelerator. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 724–736.

[30] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2009), 1345–1359.

[31] Eric Qin, Raveesh Garg, Abhimanyu Bambhaniya, Michael Pellauer, Angshuman
Parashar, Sivasankaran Rajamanickam, Cong Hao, and Tushar Krishna. 2022.
Enabling Flexibility for Sparse Tensor Acceleration via Heterogeneity. arXiv
preprint arXiv:2201.08916 (2022).

[32] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-
vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. Sigma: A sparse
and irregular gemm accelerator with flexible interconnects for dnn training. In
2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 58–70.

[33] Zheng Qu, Liu Liu, Fengbin Tu, Zhaodong Chen, Yufei Ding, and Yuan Xie. 2022.
DOTA: detect and omit weak attentions for scalable transformer acceleration. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 14–26.

[34] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[35] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

[36] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

[37] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar
Krishna. 2018. SCALE-Sim: Systolic CNN Accelerator Simulator. arXiv preprint
arXiv:1811.02883 (2018).

[38] Erik F Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition. arXiv preprint cs/0306050
(2003).

[39] Erik F Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition. arXiv preprint cs/0306050
(2003).

[40] Jong Hoon Shin, Ali Shafiee, Ardavan Pedram, Hamzah Abdel-Aziz, Ling Li, and
Joseph Hassoun. 2022. Griffin: Rethinking Sparse Optimization for Deep Learn-
ing Architectures. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 861–875.

[41] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 conference
on empirical methods in natural language processing. 1631–1642.

[42] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 conference
on empirical methods in natural language processing. 1631–1642.

[43] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020.
Matraptor: A sparse-sparse matrix multiplication accelerator based on row-wise

product. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 766–780.

[44] Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David Albonesi,
and Zhiru Zhang. 2020. Tensaurus: A versatile accelerator for mixed sparse-dense
tensor computations. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 689–702.

[45] Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu Jia, En-Yu Yang,
Marco Donato, Victor Sanh, Paul Whatmough, Alexander M Rush, David Brooks,
et al. 2021. Edgebert: Sentence-level energy optimizations for latency-aware
multi-task nlp inference. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture. 830–844.

[46] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267–288.

[47] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R
Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. arXiv preprint arXiv:1804.07461 (2018).

[48] Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spatten: Efficient sparse atten-
tion architecture with cascade token and head pruning. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 97–110.

[49] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. 2019. Neural net-
work acceptability judgments. Transactions of the Association for Computational
Linguistics 7 (2019), 625–641.

[50] Adina Williams, Nikita Nangia, and Samuel R Bowman. 2017. A broad-coverage
challenge corpus for sentence understanding through inference. arXiv preprint
arXiv:1704.05426 (2017).

[51] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. 2020.
Gobo: Quantizing attention-based nlp models for low latency and energy ef-
ficient inference. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 811–824.

[52] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. 2021. Bitfit: Simple
parameter-efficient fine-tuning for transformer-based masked language-models.
arXiv preprint arXiv:2106.10199 (2021).

[53] Guowei Zhang, Nithya Attaluri, Joel S Emer, and Daniel Sanchez. 2021. Gamma:
Leveraging Gustavson’s algorithm to accelerate sparse matrix multiplication. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 687–701.

[54] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An accelerator for sparse
neural networks. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 1–12.

[55] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. 2020. Sparch:
Efficient architecture for sparse matrix multiplication. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 261–274.

[56] Zhe Zhou, Junlin Liu, Zhenyu Gu, and Guangyu Sun. 2022. Energon: Towards
Efficient Acceleration of Transformers Using Dynamic Sparse Attention. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (2022).

