
A Unified Forward Error Correction Accelerator for Multi-Mode
Turbo, LDPC, and Polar Decoding

Yufan Yue, Tutu Ajayi, Xueyang Liu, Peiwen Xing, Zihan Wang, David Blaauw, Ron Dreslinski,
Hun-Seok Kim

University of Michigan
{funkyyue,ajayi,marliu,xingpw,zihanw,blaauw,rdreslin,hunseok}@umich.edu

ABSTRACT
Forward error correction (FEC) is a critical component in commu-
nication systems as the errors induced by noisy channels can be
corrected using the redundancy in the coded message. This paper
introduces a novel multi-mode FEC decoder accelerator that can de-
code Turbo, LDPC, and Polar codes using a unified architecture. The
proposed design explores the similarities in these codes to enable
energy efficient decoding with minimal overhead in the total area
of the unified architecture. Moreover, the proposed design is highly
reconfigurable to support various existing and future FEC standards
including 3GPP LTE/5G, and IEEE 802.11n WiFi. Implemented in
GF 12nm FinFET technology, the design occupies 8.47mm2 of chip
area attaining 25% logic and 49% memory area savings compared
to a collection of single-mode designs. Running at 250MHz and
0.8V, the decoder achieves per-iteration throughput and energy
efficiency of 690Mb/s and 44pJ/b for Turbo; 740Mb/s and 27.4pJ/b
for LDPC; and 950Mb/s and 45.8pJ/b for Polar.

CCS CONCEPTS
• Hardware→ Application specific integrated circuits.

KEYWORDS
Turbo code, LDPC, Polar code, FEC decoder

ACM Reference Format:
Yufan Yue, Tutu Ajayi, Xueyang Liu, Peiwen Xing, Zihan Wang, David
Blaauw, Ron Dreslinski, Hun-Seok Kim. 2022. A Unified Forward Error
Correction Accelerator for Multi-Mode Turbo, LDPC, and Polar Decoding.
In ACM/IEEE International Symposium on Low Power Electronics and Design
(ISLPED ’22), August 1–3, 2022, Boston, MA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3531437.3539726

1 INTRODUCTION
Wireless communication copes with errors induced by noisy chan-
nels. In order to recover the error-free data, forward error correction
(FEC) is adopted to insert redundancy into the original data so that
the receiver can detect and correct errors using the redundant in-
formation. An FEC encoder takes an information block of length

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISLPED ’22, August 1–3, 2022, Boston, MA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9354-6/22/08. . . $15.00
https://doi.org/10.1145/3531437.3539726

K and encodes it into a code block of length N . The code rate is
defined by K/N .

Turbo, LDPC and Polar codes are three popular FEC classes ac-
tively used in recent years. Turbo codes are capacity-approaching
codes that have been used in 3G UMTS [1] and 4G LTE[2]. LDPC
codes have found wide applications in WiFi[5] and 3GPP 5G NR[6]
standards. Polar code has been recently invented and adopted in the
3GPP 5G NR standard. A recent Cloud-RAN concept that incorpo-
rates standards such as 5G NR and UMTS and LTE requires multi-
standard decoding capability while several multi-mode FEC de-
coders have been proposed in recent years. Niktash et al. proposed
an application-specific processor based solution [18] for Viterbi,
Turbo, LDPC and Reed-Solomon decoding. It achieves 3883pJ/b
energy efficiency for Turbo and 435 pJ/b for LDPC excluding the
memory power. The architecture, however, is not easily extend-
able to Polar decoding. Gentile et al. designed a reconfigurable
ASIC decoder [19] for Turbo and LDPC, claiming energy efficiency
of 931pJ/b for Turbo and 63.7pJ/b for LDPC. This design imple-
ments a windowed Turbo decoding to reduce the memory size and
power overhead. Although this design supports Turbo and LDPC,
the authors do not report reconfigurability to control various pa-
rameters in FEC. Naessens et al. introduced an ASIP Turbo and
LDPC decoder [20] with 4070pJ/b for Turbo and 2410pJ/b for LDPC.
None of the above designs supports Polar decoding, and some only
implement very specific configurations defined in existing stan-
dards instead of allowing arbitrary parameters. In addition, prior
multi-mode designs have a relatively large energy efficiency gap
compared to dedicated single-mode ASIC designs.

To tackle the problems stated above, we make a critical observa-
tion that soft decision decoding algorithms for Turbo, LDPC, and
Polar codes share substantial similarities including iterative decod-
ing, usage of log-likelihood ratios (LLRs), deterministic schedules,
and dataflow graphs that involve parallel computation and memory
units, and metric updates using similar unit operations. In addition,
code lengths of existing standards are not dramatically different,
which strongly implies the potential benefits from memory sharing.

Based on these critical observations, we propose a novel area-
efficient unified reconfigurable decoder that supports Turbo, LDPC,
and Polar codes with user-configurable arbitrary parameters at
the cost of moderately increased energy consumption compared to
dedicated single-mode ASIC decoders.

2 FEC DECODING ALGORITHMS
To design a unified decoder, we studied various decoding algorithms
for each code type to select a proper set of algorithms that allows
hardware resource sharing without compromising the decoding
performance. We briefly summarize the selected algorithms in this

ISLPED ’22, August 1–3, 2022, Boston, MA, USA Yufan, et al.

section.

2.1 Turbo Decoding Algorithm
A rate 1/3 Turbo encoder consists of two parallel convolutional
encoders. It takes in the information bit sequence xs of K bits and
generates N = 3K coded bits: {xs ,xp1,xp2} where xp1 and xp2 are
produced by interleaving outputs from two convolutional encoders.

Multiple decoding algorithms have been developed as summa-
rized in [3]. We select the MLMAP algorithm due to its friendli-
ness to hardware and good decoding performance compared to
Soft-Output Viterbi Algorithm (SOVA) [26]. In MLMAP, backward
propagation is first executed to calculate all backward state met-
rics Bk (s) for all bit positions k and all states s , then the decoder
runs forward propagation to calculate forward state metrics Ak (s)
along with extrinsic information Lk . During both backward and
forward propagation, the branch metric Γk (s, s ′) is calculated for
the state transition between s and s ′. The algorithm involves several
iterations of the following calculations:

Ak (s) = max
s ′=s0,s1

(Ak−1(s
′) + Γk (s

′, s)) (1)

Bk (s) = max
s ′=s0,s1

(Bk+1(s
′) + Γk+1(s, s

′)) (2)

Γk (s, s
′) =

1
2ukLk +

1
2 (x

s
ky

s
k + x

p
ky

p
k) (3)

Lk = max
uk=+1

(Ak−1(s
′) + Γk (s

′, s) + Bk (s))

− max
uk=−1

(Ak−1(s
′) + Γk (s

′, s) + Bk (s))
(4)

whereuk is the bit encoded by the edge (s, s ′), andysk (ypk) is the log
likelihood ratio (LLR) of the received bit corresponding to xsk (xpk).
The sign of converged Lk produces the decoded bit. We adopt the
modulo-max [4] technique replacing max operations as it reduces
the dynamic range of metric calculations for a limited bit width
(8-bit in our design).

2.2 LDPC Decoding Algorithm
Quasi-Cyclic (QC) LDPC is a popular code construction type. Many
LDPC codes are QC because it allows efficient (hardware) imple-
mentation with comparable decoding performance compared to
non-QC [7]. A codeword x is generated by multiplying information
bit sequence vector with a N ×K binary generator matrix. A parity-
check matrix H with dimension K × (N − K) satisfies HxT = 0
for a valid x . In addition, H in QC-LDPC consists of sub-matrices
constructed by all-zero matrices or circular-shifted identity matri-
ces of lifting size Z . H is characterized by a tanner graph using
variable nodes (VN) representing code bits and check nodes (CN)
representing parity bits. We adopt a popular Min-Sum (MS) [8]
algorithm, which exhibits similar performance with relatively low
complexity compared to alternatives. The Min step calculates LLRs
ηmn from CNm to VN n; the Sum step calculates LLRs λnm from
VN n to CNm:

ηmn = Π
k,H (m,k)=1,k,m

siдn(λkm) min
k

(λkm) (5)

λnm = Σ
k,H (k,n)=1,k,n

ηkn + η0n (6)

where η0n is the LLRs of the received nth bit. The decoding is an
iterative process passing LLRs from VN to CN, vice versa, updating
η and λ.

2.3 Polar Decoding Algorithm
Various encoding and decoding algorithms for Polar are summa-
rized in [9]. We select the Belief-Propagation (BP) algorithm which
adopts an iterative approach to achieve good performance. The
main advantage of using BP is the feasibility of an unified archi-
tecture that shares hardware with Turbo MLMAP and LDPC MS
algorithms. An example decoding trellis and its computation unit
is shown in Fig. 1 which has n = logN columns. In each half iter-
ation, a computation unit reads two left-propagating LLRs L and
two right-propagating LLRs R, and updates two LLRs in its propa-
gation direction. During t th iteration, following computations are
performed in each computation unit:

L
(t+1)
i+1, j = f (L

(t)
i,2j ,L

(t)
i,2j+1 + R

(t)
i+1, j+N /2) (7)

L
(t+1)
i+1, j+N /2 = L

(t)
i,2j+1 + f (L

(t)
i,2j ,R

(t)
i+1, j) (8)

R
(t+1)
i,2j = f (R

(t)
i+1, j ,L

(t)
i,2j+1 + R

(t)
i+1, j+N /2) (9)

R
(t+1)
i,2j+1 = R

(t)
i+1, j+N /2 + f (R

(t)
i+1, j ,L

(t)
i,2j) (10)

where f (x ,y) = siдn(x)siдn(y)min(|x |, |y |).

Figure 1: Algorithm visualizations for Turbo, LDPC and Polar de-
coding

As shown in Fig. 1, all Turbo, LDPC, and Polar decoding algo-
rithms employ similar iterative metric update structures using a
code-dependent dataflow graph (DFG) that involve parallel metric
computing units and memory units. The message exchange pat-
terns on the DFG are deterministic and regular while a finite set
of interconnection configurations is sufficient to realize all afore-
mentioned decoding algorithms. This allows a unified architecture
that shares hardware resources for all codes without significantly
degrading the energy efficiency.

3 ALGORITHM-ARCHITECTURE
CO-OPTIMIZATIONS

Despite DFG similarities (Fig. 1), decoding algorithms require opti-
mizations to enable an efficient unified hardware architecture for
all code types. In this section, we propose algorithm-architecture
co-optimizations to improve the energy- and area-efficiency of an
unified multi-mode FEC decoder.

3.1 LDPC Decoding Optimizations
Consider an H that has A variable node sub-matrices, B check
node sub-matrices, and lifting size Z . The layered algorithm in [11]

A Unified Forward Error Correction Accelerator for Multi-Mode Turbo, LDPC, and Polar Decoding ISLPED ’22, August 1–3, 2022, Boston, MA, USA

requires simultaneously accessing and processing A × Z or B × Z
data points. These parameters need to be adjustable for unifying
multiple decoding modes. We address this issue by dividing H into
multiple rectangular windows, each containingC ×D sub-matrices
as shown in Fig. 2. These windows are processed sequentially due to
the limitation of hardware resources. During Min step, the windows
are processed row-first in the left-to-right order. The information
exchanged between adjacent windows in the same row contains
only the two minima and the first minimum index. In Sum step, the
windows are processed column-first in the top-to-down order. Only
the partial sums of previous windows are exchanged. Zero-padding
is used when A (or B) is not an integer multiple of C (or D).

Figure 2: Example window division of an LDPC parity-checkmatrix
H when A = 5, B = 2, C = 4, and D = 2.

The operations for a sub-matrix are sequentially executed while
multiple sub-matrices in a window are processed in parallel. This
approach targets flexible and high utilization of the available mem-
ory bandwidth. At time t ≡ k (mod Z) of Min step, all data at
row offset k of all sub-matrices in the current window are fed into
processing elements (PE) in parallel. In Sum step, a similar schedule
takes place on data with column offset k at time t ≡ k (mod Z).

The proposed parameterized H partitioning and memory access
patterns enable a very flexible and efficient control for LDPC decod-
ing. Each simultaneous data access is limited toC×D words whereas
C and D are determined by the target parallelism, performance, and
area constraint.

3.2 Polar Decoding Optimizations
Naive decoding of a Polar code of length N in parallel requires
6N concurrent memory accesses and data processing. This poses
excessively high resource and bandwidth requirements that are
unseen in Turbo and LDPC decoding algorithms. To resolve this
difference, we propose a Polar Folded (PF) schedule for a large N ,
and Polar Parallel (PP) schedule for a small N .

Figure 3: Node grouping and scheduling of PF decoding

Fig. 3 depicts the PF schedule which operates with G groups of
nodes. Nodes in each group are processed sequentially from top to
bottom while multiple groups are processing in parallel. Interme-
diate results are read out and written back to the metric memory.

Due to the concurrent memory accesses given the DFG structure,
parallel memory accesses create collisions among different groups.
This problem persists even if nodes are sequentially processed in
each group. To mitigate this collision, we divide all nodes into even
and odd sets with two non-colliding data access patterns as shown
in Fig. 3 for a left-propagating example. The pattern for the right-
propagating is similar. This scheme allows full hardware utilization
regardless of the code length.

For a shorter code that inherently require low utilization of com-
putation and memory bandwidth resources, we apply the PP sched-
ule. It consists of a single group and all intermediate results can be
forwarded to the next column in parallel for a better throughput
and energy efficiency.

4 PROPOSED UNIFIED DECODER
ARCHITECTURE

Based on the selected algorithms and optimizations in Section II/III,
we propose a unified architecture shown in Fig. 4. This architec-
ture aims at maximizing hardware (memories, interconnect, PEs,
etc.) sharing between Turbo, LDPC, and Polar. We discuss several
essential architectural features for the shared memory and PE logic
in subsequent sections.

Figure 4: Top-level architecture of the unified decoder

4.1 Unified Metric Memory
Metric memory is the storage of intermediate metrics such as
Ak ,Bk ,η, λ,L,R in eq. (1) – (10). We propose a novel memory map-
ping and scheduling scheme for the unified metric memory system
to improve utilization and avoid conflicts of memory accesses for
parallel execution in all codes. LDPC and Polar codes tend to have
larger bandwidth requirements while the storage depth (i.e., the
number of stored entries in thememory) is relatively shallow. Hence
we need to design the memory system using small banks for simul-
taneous/parallel data accesses. Turbo codes, on the other hand, tend
to have larger storage capacity requirements whereas the access
bandwidth requirements are relatively relaxed. Thus, to share the
memory system for all codes, a large number of small banks need
to be reconfigurable to a smaller number of larger logical memory
units with more capacity and reduced bandwidth.

Details of memory mappings are presented in Fig. 5 where each
memory instance is a 512×8b SRAM to store 8b-wide metrics. For
Turbo codes, we map the code bit index k to memory address k , and
map trellis state s to memory group s . To provide enough storage, a
memory group is formed to contain 8 memory banks to hold 8×512
8b entries. Memory accesses are sequential in Turbo mode. The
path metric of state s and bit location k is stored at memory group s

ISLPED ’22, August 1–3, 2022, Boston, MA, USA Yufan, et al.

Figure 5: Metric memory grouping and mapping, and example memory-PE interconnection configurations for different codes.

and address k . It is accessed at time tk = k in forward propagation
and tk = N − 1 − k in backward propagation.

An LDPC code exhibits a different mapping of metric data to
the memories. Each sub-matrix inside a window is mapped to a
memory group depending on its position in the window. Because
of the QC nature of LDPC codes, each column in a sub-matrixm
has at most one valid data. Therefore a column c in a sub-matrix
of a window wm is mapped to address km,c = c +wmZmax . De-
noting the shift amount of an identity matrix of this sub-matrix
by sm , the access time tkm,c of entry km,c in a memory is ob-
tained by tkm,c = wmZ + (km,c − sm (mod Z)) for Min step and by
tkm,c = wmZ + c for Sum step. Each memory group consists of 2
banks acting as ping-pong buffers for simultaneous read and write
accesses. As discussed in Section III, LDPC decoding is sequential
between windows but sub-matrices within a window are accessed
in parallel. The proposed mapping can guarantee collision-free
memory accesses. The sub-matrix shift amounts sm are stored in
a register file nearby the metric memory, serving as an offset for
address generation to accommodate arbitrary H patterns.

Polar Folded (PF)modemaps each node group shown in Fig. 3 to a
memory group that consists of a ping-pong memory pair. In a Polar
decoding trellis (Fig. 1), the right- and left-propagating messages
R and L of different columns are mapped using ascending address
blocks, ordered by their node offset in each node group. The R (L)
message at column c and bit location b is stored in memory group
Mb,R (Mb,L), where Mb,R = ⌊ b

N /G ⌋ holds (and Mb,L = Mb′,R
for the connected bits b and b ′ in the trellis). Each node access is
sequential within a node group in the order specified in Fig. 3.

Polar Parallel (PP) mode maps each bit’s L message in even
columns and R message in odd columns in the first half of all
memory banks. The mapping is flipped (R to even and L to odd)
in the second half of all memory banks. This guarantees that an
even-column node only reads even-column L message and writes
odd-column R message, and vice versa, avoiding memory conflicts
for the maximum bandwidth utilization when parallel PEs access
multiple memory banks.

4.2 Unified Processing Element Array
The Processing Element (PE) array employs 128 copies of PEs to

compute mode-dependent decoding metrics in parallel while con-
currently accessing the unified metric memory. The 128 PEs and
unified metric memory communicate with each other via an in-
terconnect logic that cycles through deterministic interconnection
patterns given by the dataflow graph. Each PE consists of 32 Multi-
Mode Adders (MMAs) and each MMA unifies 8-bit (auto-saturate)
addition, (auto-saturate) subtraction, modulo-max, equality check,
and unsigned-min. The PE is capable of performing all necessary
operations for Turbo, LDPC and Polar decoding with deliberate
logic sharing to minimize the total area. The proposed MMA is
synthesized with 21 full adders(FA) and 1 half adder(HA). Fig. 6

Figure 6: PE configurations and connections, each block is an MMA

shows the PE configuration and MMA connections for different
decoding modes. In Turbo mode, only 3 or 5 MMAs are used. MMA0
and 2 compute addition (ADD) and MMA5 computes modulo-max
(MMX) in Turbo backward propagation whereas additional MMA1
and 3 compute path metric additions in forward propagation. In
LDPC Min step, all MMAs perform equality check (EQC) together
with the reduction tree (RT, Section III.C) to find the min data in-
dex and write the first and second minimum to memory. In LDPC
Sum step, all MMAs compute saturated subtraction (SSB) to extract
intrinsic-information from the sum to be written in the metric mem-
ory. In Polar modes (PM and PP), MMAs are divided into groups of
4. MMA0 and 3 of each group calculate saturated additions (SAD)
of inputs while MMA1 and 2 of each group compute unsigned-mins
(UMN) of inputs. Both LDPC and Polar (PF/PP) modes fully utilize
all available MMAs in the PE.

A Unified Forward Error Correction Accelerator for Multi-Mode Turbo, LDPC, and Polar Decoding ISLPED ’22, August 1–3, 2022, Boston, MA, USA

4.3 Unified Reduction Tree
The Reduction Tree (RT) in Fig. 4 and 8 is an essential component
to perform bandwidth-reducing operations such as extrinsic infor-
mation calculations in Turbo and min/sum evaluation across all
variable nodes/check nodes in LDPC decoding. These operations
have very similar data movement patterns and unit operations,
thus allowing a shared RT architecture for Turbo and LDPC. Polar
decoding does not use RT.

Figure 7: Reduction Unit (RU) mappings

Fig. 7 shows the basic operations of a Reduction Unit (RU) in RT.
An RU computes modulo-max in Turbo, two minimum in LDPC
Min step, and sum in LDPC Sum step. In Turbo mode, it takes
two branch metric values a0 and a1 from the previous layer and
calculates the modulo-max c0. For LDPC Min step, an RU takes in
two first minimums a0 and a1 as well as two corresponding second
minimums b0 and b1 to calculate the first and second minimums c0
and c1 among these four inputs as shown in Fig. 7. In LDPC Sum
step, an RU takes two partial sums a0 and a1 to compute the sum
of them.

Figure 8: RT connections

As shown in Fig. 8, RT consists of 7 layers of RUs in a tree form.
The first layer has 256 RUs to match the PE array throughput of
LDPC decoding. As each LDPC window size is 16 × 8, RT requires
5 and 4 layers of RUs for Min and Sum step, respectively. A layer F
is added next to the last layer only for LDPC to merge results from
different windows. The connection between layers are identical
in LDPC and Turbo modes, which minimizes MUX overhead and
simplifies control. Furthermore, RT is reconfigurable to produce
output for different (code dependent) numbers of total Turbo states
by enabling or bypassing certain layers in RT.

4.4 Other components
The proposed design features an unified Broadcast Memory (Fig. 4)
for Turbo extrinsic information broadcasting and LDPC channel
LLR broadcasting. Input Buffer uses ping-pong memory to hide

irregular and bursty input arrivals. Interleave Memory is used for
interleaving (with an arbitrary programmable pattern) required in
Turbo operation.

Interconnects in Fig. 4 realizes all required connection patterns
(some are illustrated in Fig. 5) between Metric Memory and PE
array with a code-dependent configurable schedule. Since the ad-
dress generation is localized within the metric memory (to handle
arbitrary H), the number of necessary interconnect configurations
for each code type is relatively small (≤ 4). The interconnects in-
clude a point-to-point inter-PE interconnect network to provide
inter-PE connections in Turbo and PP modes for data forwarding
without involving the metric memory. The user-configured MUXes
in the interconnects allow decoding of arbitrary Turbo generator
polynomials.

For the final output, the decoded soft bits needs to be converted
to hard bits then punctured (removing Polar frozen bits) and re-
ordered (resolving the decoding order and information bit order
mismatch). The output bits are sent to the 64-bit AXI port for
interfacing with a host processor and other components in the
system. We use Output scheduling Buffer (OB) logic to complete
this job. The OB first reads in soft bits, generates hard decisions
based on their sign, and stores them in a byte-addressable memory.
Next, depending on the decoding mode, the data is read out of the
memory in different patterns for re-ordering. Bits then go through
puncturing units and are fed into a FIFO for AXI transactions.
In Polar modes, an arbitrary puncturing pattern (supporting an
arbitrary Polar code rate) can be programmed either in an SRAM or
registers depending on the code length. The puncturing units can
be reused in LDPC mode to trim unwanted tail bits. Turbo mode
bypasses puncturing and re-ordering operations.

5 EXPERIMENTAL RESULTS

Figure 9: Area savings of mem-
ory and logic

Figure 10: Layout view of pro-
posed architecture

Fig. 9 quantifies the logic and memory area savings from the
proposed unified architecture compared to a collection of dedicated
single-mode decoders. The total adder count of the unified archi-
tecture is similar to that of a Polar decoder and the memory area is
similar to that of a Turbo decoder. Consequently the unified design
saves 25% of logic and 49% of memory compared to the sum of in-
dividual implementations of each code. The design uses 8-bit fixed
point metrics. The architecture was synthesized with Synopsys De-
sign Compiler, and the physical design (APR, layout, and DRC/LVS
check) is completed with Cadence Innovus in GF 12nm technology.
Fig. 10 shows the layout result, and the total chip area is 8.47mm2.
We estimated the power consumption using Synopsys PTPX at 250
MHz and 0.8V. Full design validation was conducted by enumerat-
ing all decoding modes and code parameters. For benchmarking,

ISLPED ’22, August 1–3, 2022, Boston, MA, USA Yufan, et al.

Table 1: Performance comparisons with prior designs
Turbo LDPC Polar

Designs Ours [21] [22] [18] [19] [20] Ours [23] [18] [19] [20] Ours [24] [25]

Algorithm ML Dual 2PW SW MAP SW MS MS Turbo- TDMP N/A BP SC BPMAP Trellis logMAP MAP MAP Like
Voltage (V) 0.8 0.9 1.2 N/A N/A 1.2 0.8 0.9 N/A N/A 1.2 0.8 1.3 1.0

Frequency (GHz) 0.250 0.370 0.125 N/A 0.150 0.32 0.250 0.550 N/A 0.150 0.32 0.250 0.0025 0.300
Technology (nm) 12 90 90 90 45 65 12 90 90 45 65 12 90 65

Metric Precision (bit) 8 6 N/A N/A 5,7 10 8 4 4 5 10 8 5 N/A
Multi-Code Modes a T,L,P — — T,L T,L T,L T,L,P — T,L T,L T,L T,L,P — —

Arbitrarily Configurable k, P, — — — — not re- Z , R, — — — not re- F , R, — —
Parametersb I, N ported H, N ported N
Benchmark 3GPP LTE, N = 512 IEEE 802.11n, N = 1944 Rate=1/2, N = 128

Throughput (Gb/s/iter) 0.69 2.55 2.50 0.05 0.12 0.14 0.74 4.50 0.46 0.98 0.64 0.95 2.56 30.7
Energy (pJ/b/iter) 44 122 38 3883 699 4071 27.4 116 435 87.6 2407 45.8 74.5 15.5

Energy normalized to 12nm 16 3.45 509 184 740 1.52 57.1 23.0 438 13.5 2.82
a Multi-code types supported by the decoder – T: Turbo, L: LDPC, P: Polar
b Arbitrarily-configurable parameters – k : constraint length, P : encoder polynomial, I : interleave pattern, N : code length, Z : sub-matrix size, R : code rate,
H: parity-check matrix pattern, F : frozen bit locations

Table 2: Reconfigurability summary
Turbo LDPC Polar

Param. Range Param. Range Param. Range
N ≤3072 N ≤1944 N ≤4096
R 1/3 R arbitrary R arbitrary
k 3∼7 Z ≤ 81 F arbitrary
P arbitrary H QC,
I arbitrary arbitrary pattern

we tested Turbo code for 3GPP LTE standard[2] with rate 1/3 and
N = 512, LDPC code for IEEE 802.11n [5] with rate 1/2, Z = 81 and
N = 1944, and Polar code with rate 1/2 and N = 128.

We compare our design with other signle-/multi-mode designs in
Table 1. To have a fair comparison, we report per-iteration energy
consumption numbers scaled to 12nm using an optimistic scaling
factor obtained from Spice simulations that compare Fan-Out-of-4
(FO4) inverter chain energy in different process technologies. The re-
sult shows our architecture has comparable energy efficiency while
supporting much higher flexibility and reconfigurability. Compared
to other multi-mode designs, ours exhibits higher throughput and
significantly lower energy (except for LDPC in [19]) while ours is
the only design that supports Polar modes and various arbitrary
parameters for each mode. Reconfigurabile parameters supported
by our design are summarized in Table 2. With abundant config-
urable parameters for Turbo, LDPC and Polar codes, this decoder
can support a wide range of existing/future standards as well as
proprietary codes tailored for target applications.

6 CONCLUSION
This paper proposes a unified FEC decoder architecture for current
and future standards of Turbo, LDPC and Polar codes. Algorithm-
architecture co-optimizations are performed to cope with code-
dependent datapaths in a unified architecture. Post-synthesis/-
layout simulation results indicate large reconfigurability advan-
tages and comparable energy efficiencies compared to dedicated
prior single-/multi-mode FEC decoders.

ACKNOWLEDGMENTS
This work was sponsored in part by the U.S. Government under
the DARPA DSSoC program, award #FA8650-18-2-7860.

REFERENCES
[1] Y. Hawwar et al., "3G UMTS wireless system physical layer: baseband processing

hardware implementation perspective," IEEE Comm. Mag., vol. 44, no. 9, pp. 52-58,
Sept. 2006.

[2] Z. Shen, A. Papasakellariou, J. Montojo, D. Gerstenberger and F. Xu, "Overview
of 3GPP LTE-advanced carrier aggregation for 4G wireless communications,"
IEEE Comm. Mag., Feb. 2012.

[3] J. P. Woodard and L. Hanzo, "Comparative study of turbo decoding techniques:
an overview," IEEE Trans. Veh. Tech., Nov. 2000.

[4] C. B. Shung, P. H. Siegel, G. Ungerboeck and H. K. Thapar, "VLSI architectures
for metric normalization in the Viterbi algorithm," IEEE ICC, 1990, pp. 1723-1728
vol.4.

[5] IEEE P802.11 Wireless LANs WWiSE Proposal: High Throughout Extension to
the 802.11 Standard, IEEE 11-04-0886-00-000n, 2005.

[6] 3GPP TS 38.212 version 15.2.0 Release 15 : 5G; NR; Multiplexing and channel
coding, ETSI, 2017.

[7] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja and D. J. Costello, "LDPC block
and convolutional codes based on circulant matrices," IEEE Trans. Inf. Theory,
vol. 50, no. 12, pp. 2966-2984, Dec. 2004.

[8] A. Anastasopoulos, "A comparison between the sum-product and the min-sum
iterative detection algorithms based on density evolution," GLOBECOM, 2001,
pp. 1021-1025 vol. 2.

[9] K. Niu, K. Chen, J. Lin and Q. T. Zhang, "Polar codes: Primary concepts and
practical decoding algorithms," IEEE Comm. Mag., July 2014.

[10] S. Sun and Z. Zhang, "Architecture and optimization of high-throughput belief
propagation decoding of polar codes," ISCAS, 2016, pp. 165-168.

[11] A. Amaricai, D. Stein and O. Boncalo, "Generalized Very High Throughput Un-
rolled LDPC Layered Decoder," TELFOR, 2020, pp. 1-4.

[12] J. Li, G. He, H. Hou, Z. Zhang and J. Ma, "Memory efficient layered decoder design
with early termination for LDPC codes," ISCAS, 2011.

[13] T. T. Bao Nguyen and H. Lee, "Efficient Four-way Row-splitting Layered QC-
LDPC Decoder Architecture," ISOCC, 2018, pp. 210-211.

[14] S. Kim, G. E. Sobelman and H. Lee, "A Reduced-Complexity Architecture for
LDPC Layered Decoding Schemes," IEEE TVLSI, vol. 19, no. 6, pp. 1099-1103, June
2011.

[15] Z. Wu and D. Liu, "Memory sharing techniques for multi-standard high-
throughput FEC decoder," SAMOS, 2014, pp. 93-98.

[16] M. Y. Zinchenko, A. M. Levadniy and Y. A. Grebenko, "LDPC Decoder Power
Consumption Optimization," IEEE REEPE, 2020, pp. 1-5.

[17] F. Maessen et al., "Memory power reduction for the highspeed implementation
of turbo codes," IEEE SiPS, 2001, pp. 16-24.

[18] A. Niktash, H. T. Parizi, A. H. Kamalizad and N. Bagherzadeh, "RECFEC: A Re-
configurable FEC Processor for Viterbi, Turbo, Reed-Solomon and LDPC Coding,"
IEEE WCNC, 2008, pp. 605-610.

[19] G. Gentile, M. Rovini and L. Fanucci, "A multi-standard flexible turbo/LDPC
decoder via ASIC design," ISTC, 2010, pp. 294-298.

[20] F. Naessens et al., "A 10.37 mm2 675 mW reconfigurable LDPC and Turbo encoder
and decoder for 802.11n, 802.16e and 3GPP-LTE," IEEE VLSIC, 2010, pp. 213-214.

[21] C. -Y. Lin, C. -C. Wong and H. -C. Chang, "An Area Efficient Radix-4 Reciprocal
Dual Trellis Architecture for a High-Code-Rate Turbo Decoder," IEEE TCAS-II,
vol. 62, no. 1, pp. 65-69, Jan. 2015.

[22] C. -H. Lin, C. -Y. Chen and A. -Y. Wu, "Area-Efficient Scalable MAP Processor
Design for High-Throughput Multistandard Convolutional Turbo Decoding,"
IEEE TVLSI, vol. 19, no. 2, pp. 305-318, Feb. 2011.

[23] I. Tsatsaragkos and V. Paliouras, "A Reconfigurable LDPC Decoder Optimized for
802.11n/ac Applications," IEEE TVLSI, Jan. 2018.

[24] O. Dizdar and E. Arıkan, "A High-Throughput Energy-Efficient Implementation
of Successive Cancellation Decoder for Polar Codes Using Combinational Logic,"
IEEE TCAS-I, vol. 63, no. 3, March 2016.

[25] Youn Sung Park, Yaoyu Tao, Shuanghong Sun and Zhengya Zhang, "A 4.68Gb/s
belief propagation polar decoder with bit-splitting register file," IEEE VLSIC, 2014,
pp. 1-2.

[26] Ling Cong, Cui Long andWu Xiaofu, "Further results on the equivalence between
SOVA and max-log-MAP decodings," ICCT 2000.

