
Enabling Software-Defined RF Convergence with a
Novel Coarse-Scale Heterogeneous Processor

D. W. Bliss1,2, T. Ajayi1,3, A. Akoglu5, I. Aliyev5, T. Basaklar4, L. Belayneh3, D. Blaauw3, J. Brunhaver1,2,
C. Chakrabarti1,2, L. Chang1,2, K.-Y. Chen3, M.-H. Chen3, X. Chen1,2, A. R. Chiriyath1,2, A. Daftardar3,

R. Dreslinski3, A. Dutta1,2, A. J. Farcas6, Y. Fu1,2, A. Goksoy4, X. He3, Md. S. Hassan5, A. Herschfelt1,2,
J. Holtom1,2, H.-S. Kim3, A. N. Krishnakumar4, Y. Li1,2, O. Ma1,2, J. Mack5, S. Mallik3, S. K. Mandal4,

R. Marculescu6, B. McCall1,2, T. Mudge3, U. Y. Ogras4, V. Pandey4, S. Siddiqui1,2, Y.-H. Sun3,
A. Venkataramani1,2, X. Wei3, B. R. Willis1,2, H. Yu1,2, Y. Yue3

Abstract—RF system development is traditionally con-
strained by a restrictive trade-off between power efficiency and
programmatic flexibility. We outline a path towards achieving
both, thereby enabling a range of new system concepts that
better utilize limited resources. As an example, for many future
applications, we consider RF convergence – reusing the same
spectrum and waveforms to achieve multiple distributed system
functions and goals, simultaneously. To enable this next step in
processing, we develop a novel framework that includes both
software and the system-on-chip (SoC) design.

Index Terms—Communications; wireless; radar; positioning,
navigation, and timing; processing; and computers.

I. INTRODUCTION

For a variety of good engineering reasons, most of the
use of the spectrum has historically been relatively rigid.
Communications; radar; positioning, navigation, and timing;
and other systems have been carefully spectrally isolated,
often with inflexible standards. To efficiently implement these
functions historically required rigid implementations. Because
of advances in flexible frontend technologies [1]–[3] and new
flexible, efficient computational capabilities – the focus of
this paper – we enable novel, flexible, efficient use of the
spectrum, such as radio frequency (RF) convergence. We

1 Center for Wireless Information Systems and Computational Archi-
tectures (WISCA), Arizona State University, Tempe.

2 School of Electrical, Computer, and Energy Engineering, Arizona State
University, Tempe.

3 Department of Electrical and Computer Engineering, University of
Michigan, Ann Arbor.

4 Department of Electrical and Computer Engineering, University of
Wisconsin–Madison, Madison.

5 Electrical and Computer Engineering Department, University of Ari-
zona, Tucson.

6 Electrical and Computer Engineering Department, University of Texas
at Austin, Austin.

This material is based on research sponsored Air Force Research Laboratory
(AFRL) and Advanced Research Projects Agency (DARPA) under agreement
number FA8650-18-2-7860. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of Air
Force Research Laboratory (AFRL) and Defense Advanced Research Projects
Agency (DARPA) or the U.S. Government.

use the term RF to indicate a broad range of frequencies
from low to terahertz. The use of convergence indicates the
implementation of multiple simultaneous functions through
intelligent spectrum sharing [4], [5].

Many modern platforms for these capabilities – whether
handheld, IoT device, small UAS, or even cubesat – have
significant limitations on power consumption and heat dis-
sipation. The maximum power consumption can be as low
as 100 mW to a few Watts. We show that many interest-
ing applications require somewhere between a fraction of a
TOp/s to several. Thus, we need processor efficiency on the
order 1 TOp/s/W or more, similar to full-custom, application-
specific integrated circuits (ASICs). To enable complicated,
flexible, multiple function RF convergence systems, we re-
quire these implementations to be easily programmable and
continuously reconfigurable, similar the scalar processors in
our laptop computer, which have orders of magnitude poorer
efficiency than ASICs, as we depict in Figure 1.

To address the difficulties in programming such a processor,
we developed an example coarse-scale heterogeneous system-

0.1

1

10

100

1000

Technology Node (nm)
90 65 45 32 22 14

G
O

P
/s

/W

GPU

Custom

ASIC

FPGA

Vector

Scalar

Computational Power Efficiency

Fig. 1. Comparison of processing power efficiency for RF signal processing
applications as a function of processor architecture and node size. To some
extent, node size is a surrogate for time, as integrated circuit feature size
continues to shrink. We compare examples of full-custom, application-specific
integrated circuits (ASICs), field-programmable gate arrays (FPGAs), graphi-
cal processing units (GPUs), vector processors, and scalar general processors.

978-1-6654-8485-5/22/$31.00 ©2022 IEEE 443

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
C

irc
ui

ts
 a

nd
 S

ys
te

m
s (

IS
C

A
S)

 |
97

8-
1-

66
54

-8
48

5-
5/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
C

A
S4

87
85

.2
02

2.
99

37
60

2

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 14,2024 at 15:39:02 UTC from IEEE Xplore. Restrictions apply.

on-chip (SoC) and a supporting compile-time and run-time
software suite. We denote our computational approach the
Domain-focused Advanced Software-reconfigurable Hetero-
geneous (DASH) SoC framework. Our framework includes
compile-time and run-time software and a general approach
for SoC architectures.

Here it is worth noting that not all operations are the same
cost. While one can find very high efficiency for certain types
of computations that employ relatively low computational
dynamic range – machine learning engines, for example –
many important operations for RF systems need relatively high
computational dynamic range with complex variables, so we
focus on this class of operations.

In Section II, we introduce RF convergence. In Section
III, we provide estimates of computational costs for example
RF applications. In Section IV, we detail our framework
to implement coarse-scale heterogeneous processors, and to
address associated challenges.

II. RF CONVERGENCE

The concept of RF convergence [4]–[7] covers a range
of techniques. The fundamental idea is that RF systems are
sufficiently flexible to perform multiple functions simultane-
ously. We often consider the examples of communications,
radar, and PNT, but other applications that employ the RF
spectrum can be incorporated as well. We assume that radiated
RF waveforms can be used for multiple functions, simulta-
neously. Similarly, we assume receivers can extract multiple
types of information from received signals and potentially
disentangle disparate temporally and spectrally overlapping
waveforms from multiple sources. Ideally, system resources
(spectral occupancy, waveforms, energy, receiver degrees of
freedom, etc.) are continuously optimized to achieve the best
overall system performance. In general, there is some high-
dimensional space of performance metrics [6]–[9]. In this
space, there is a manifold of best-case joint performance, as
notionally depicted in Figure 2. By varying system parameters,
we can move along this manifold as needed to achieve the
time-varying goals of the system, which potentially consists
of a large number of nodes, each with its own goals and
capabilities.

Joint RF Convergence
Performance Limits

Comms
Sensing
Or PNT

Radar

Current Operating Point

Optimization

Operational
Goals

Performance
Space

Information Theoretic
EM Command & Control

Fig. 2. For a space of joint performance metrics – for example, radar,
communications, sensing – there exists a manifold of best performance for a
given set of spectral, hardware, and processing resources. As the distributed
system’s needs vary, system parameters – such as waveform, power, and
processing – are modified to best achieve overall multiple-function system
goals.

III. COMPUTATIONS

As a motivation for advanced processors, we consider the
computational complexity of a subset of tasks useful for RF
convergence applications. Specifically, we evaluate computa-
tional complexity for communications and radar processing
examples.

As an example radar application, we consider correlation-
based pulse-Doppler processing. For nR range bins and nD

Doppler bins, the complex image M ∈ CnD×nR is given by

M = FZS† , (1)

where ·† indicates Hermitian conjugate, F ∈ CnD×nR is
the discrete Fourier transform which is typically implemented
by fast Fourier transform (FFT), Z is the nD number of
pulses (same as Doppler bins) by ns sample data matrix Z ∈
CnD×ns , and S is the nR number of range bin by ns number
of sample reference matrix S ∈ CnR×ns . The computational
complexity is proportional to (nD log nD)nR and nD ns nR

per nD nS collected processing interval (CPI). This trans-
lates to order (nD log nD)nR/(nD ns) = log(nD)nR/ns

and nD ns nR/(nD ns) = nR computations per sample. For
reasonable parameters, the second term dominates, so nR per
sample. To approximate a modern automotive application, let’s
assume 400 MHz of bandwidth with around 250 m of range, so
nR ≈ 650, which corresponds to a good fraction of a TOp/s.

To implement multiple-antenna interference mitigation in
dispersive channels, we use space-time receive beamforming
[10], [11]. The construction of the beamformer is given by

ŝ = w† Z̃data, (2)

w = (Z̃t Z̃
†
t)

−1 Z̃t s
†, (3)

Z̃t =

Zt,δ1

Zt,δ2
...

Zt,δnd

 , (4)

where the number of receive antenna nr by number of samples
ns space-time data matrix that contains training data is given
by Z̃t ∈ C(nr·nd)×ns . The number of tap delays incorporated
into the data matrix is given by nd. We use Zt,δm ∈ Cnr×ns

to indicate the data matrix shifted in time by δm.
The computational complexity is proportional to

(nr nd)
2 ns for space-time covariance estimation, (nr nd)

3 for
matrix inversion, (nr nd)ns for cross-covariance estimation,
and (nr nd)ndata for filter application per communications
data frame or super frame. Of these terms, the space-time
covariance estimation is typically the most expensive. It
would not be surprising to require beamforming updates
every few milliseconds. For a system with nr = 8 antennas,
a delay range of nd = 15 taps, and ns = 10 nr nd, we have
order of magnitude complexity of 10 (nr nd)

3 – on the order
of 100 GOp/s.

A useful tool for RF convergence is temporal interference
mitigation, which is effectively a projection operation. Here,
we project onto a basis that is orthogonal to a signal sequence

444

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 14,2024 at 15:39:02 UTC from IEEE Xplore. Restrictions apply.

and some delayed versions of that sequence. As an example,
consider an nr multiple antenna receiver providing the ns

sample data matrix Z ∈ Cnr×ns . To remove known or
estimated sequence s ∈ C1×ns and delayed versions of this
sequence (sδm), we implement

Z′ = ZP⊥
S (5)

= Z− (ZS†) (SS†)−1 S (6)

S =

sδ1
sδ2

...
sδN

 , (7)

where Z′ ∈ Cnr×ns is the data matrix with s removed. The
number of complex operations for this task are proportional
to n3

d, nr ns nd, and n2
d ns per ns samples. Because ns is

typically large compared to either nr or nd, the largest term
is either n2

d ns or nr ns nd. The cost per sample is proportional
to n2

d or nr nd. An 8-antenna system with 8-delay mitigation
would require 100s of operations per sample. If the sample
rate is order 100 MHz, the task would cost multiple 10s of
GOp/s.

By considering the Tanner graph representation (as we
depict in a toy example in Figure 3) of a low-density parity
check (LDPC) code, we observe that number of operations
per decoding iteration is proportional to at least the sum of
paths connecting to each data vertex times the number of data
vertices plus the sum of paths connecting to each parity check
vertex times the number of parity check vertices. We consider
an LDPC code with density α, with k information bits and
code length n. We assume belief propagation is employed to
decode with niter iterations. If the density nonzero entries in
the parity check matrix is α, then the cost at each of the
αn variable nodes is roughly proportional to [α (n − k)].
The cost at each of the α (n − k) parity check (factor)
nodes is roughly proportional to αn. The computational cost
of decoding includes terms approximately proportional to
[αn]α (n − k)niter and [α (n − k)]αnniter, with different
coefficients, per n received likelihoods. By using typical
parameters, it is easy to expect order hundreds of operations
per information bit, so 100 Mb/s would correspond to order
hundred GOp/s.

IV. HETEROGENEOUS PROCESSOR FRAMEWORK

We want a processor that can simultaneously perform the
above tasks and many more. We need the implementation to
be flexible, so resources can be adaptively used as application
loads asynchronously wax and wane. We want to make these
tasks relatively easy to program, and be able to add new
application tasks without having to modify old tasks. All these
tasks need to be performed with much greater efficiency than
general processors would allow.

These requirements drive us to domain-specific coarse-
scale heterogeneous SoC solutions. As we indicate in the
notional task vs computational cost plot in Figure 4, there
are typically a small number of tasks that consume most

Code
Words

Parity
Checks

Graph Representation

n n-
k

Fig. 3. Notional depiction of bipartite Tanner graph. Decode an LDPC code
by updating likelihoods back and forth across sides of the graph.

of the computational resources, while many tasks consume
relatively little. Naturally, we focus our engineering efforts
on accelerating those computational kernels that represent the
largest computational costs.

…
Task

C
om
pu
ta
tio
ns

M
at

rix
 M

ul
tip

le

FF
T

Q
R

FE
C H

ig
he

r
La

ye
rs

Task Distribution

Accelerated

Fig. 4. Notional distribution of key computational kernel costs for an
interference-mitigating multiple-antenna receiver for an orthogonal frequency
division multiplexing (OFDM) waveform. The notation FFT indicates the fast
Fourier transform. QR indicates a matrix decomposition that is often used as an
intermediate step for matrix inversion. FEC indicates forward error correction.

DASH Framework – As we depict in Figure 5, we devel-
oped a framework that enables the efficient implementation
of RF processing applications. This spans a wide range of
timelines, from SoC design, to code analysis, to compile-time,
to run-time, to the intelligent scheduler (IS) adaptively making
resource management decisions within a few nanoseconds to
enable multiple applications to operate simultaneously and
asynchronously.

Ontological Analysis – We analyze dynamic program traces
to determine the flow of the program. We developed analysis
tools that discover computational kernels, label these kernels,
and produce parallel task graphs [12]. This information can
be used to optimize SoC layout and to provide task graph
information to the run-time software and intelligent scheduler.

Compile-Time and Run-Time Software – In our compile-
time environment, we leverage our knowledge of accelerated
kernels and produce “fat” binaries that incorporate multiple
implementation approaches within the executable [13]–[15].

445

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 14,2024 at 15:39:02 UTC from IEEE Xplore. Restrictions apply.

DASH Development Framework

Intelligent Scheduler

Train IS

IS = Intelligent
Scheduler

Fat Binaries

D
ebugging

K
ernel A

ccess

Software
Development

Hardware
Design

Network-on-Chip DASH System-on-Chip

Network-on-Chip

Arm Cluster Red

L3
Cache FFT FIR DAP

1

FEC DAP
2Interfaces

IS

Ontological
Analysis

Determine
Computational
Relationships

and
SoC Floorplan Efficient

Real-Time
Implementations

Repository
of Domain

Application
Code

Fig. 5. The domain-focused advanced software-reconfigurable heterogeneous (DASH) framework incorporates a compile-time and run-time software suite
along with an approach for designing advanced heterogeneous SoCs. The software informs and enables the intelligent scheduler (IS) to adaptively manage
SoC resources.

For example, the FFT can be executed on the ARM processor,
the DAP, and most efficiently on the FFT accelerator. In our
run-time environment, the run-time software works with the
intelligent scheduler to select the best version of the binary to
execute.

IS – To enable real-time adaptive SoC resource management
for scenarios that have multiple simultaneous applications run-
ning, we developed an intelligent scheduling (IS) capability.
Because resource needs can vary dramatically and quickly, the
IS is a necessary technology. It would be impossible to hand-
schedule tasks in environments in which new applications
are being added and removed in real time. Our IS employs
a combination of approaches to reduce scheduling latency
[16]. In static scenarios, the IS keeps the current resource
allocation strategy. When there is a status change, we employ
an imitation learning (IL) approach that was trained on high-
performance strategies. Our implementation of IL allows us
to execute resource allocation decisions more rapidly than the
reference high-performance strategies [17]–[20].

DASH SoC – We developed an enabling SoC architecture.
As seen in Figure 6, we incorporated a cluster of ARM
processors for general processing, a fast on-chip network,
and a number of on-chip accelerators. We have dedicated
accelerators for FFTs and finite-impulse-response (FIR) filters.
We have developed a flexible forward error correction (FEC)
decoder that efficiently implements a range of codes including
turbo, low-density parity check, and polar codes. Prior to chip
fabrication, we cannot know all required basic functions or
kernels of future applications, so we developed a flexible
high-performance systolic array processor, denoted domain-
adaptive processor (DAP).

Flexible FEC – Our flexible FEC accelerator provides
the tools to efficiently implement a range of error-correcting
codes, including turbo, LDPC, and polar. In our preliminary

DASH SoC

MAC CMN-600

Arm Cluster Red

L3
Cache FFT FIR DAP

1

FEC DAP
2Interfaces

IS

Fig. 6. The DASH SoC connects a cluster of ARM processors, accelerators,
and interfaces via a high-speed network on-chip. Accelerators include FFT,
FIR filters, DAPs, and flexible FECs.

efforts, we have shown that the power efficiency for FECs that
can be implemented on the accelerator are as efficient – or at
least within a reasonable factor – of full-custom equivalents.

DAP – Our DAP is a flexible high-performance systolic
array processor that enables the implementation of a range
of kernels. Multiple kernels can be executed simultaneously
across the DAP. Furthermore, the functionality of the DAP
can be nearly instantaneously changed as tasks change. For
a range of kernels, we have empirically shown that the DAP
is as efficient – or at least within a reasonable factor – of
full-custom equivalents

V. SUMMARY

We developed an approach that enables efficient processing
by employing coarse-scale heterogeneous processors. Unlike
some prior related efforts, we provide the framework to enable
flexibility and relatively easy programming. From a system
engineer’s perspective, the DASH framework opens numer-
ous new opportunities for flexibly and dynamically matching
computations to the environmental and system’s needs.

446

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 14,2024 at 15:39:02 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Ryynanen, K. Kivekas, J. Jussila, A. Parssinen, and K. A. Halonen, “A
dual-band rf front-end for wcdma and gsm applications,” IEEE Journal
of Solid-State Circuits, vol. 36, no. 8, pp. 1198–1204, 2001.

[2] M. Feng, S.-C. Shen, D. C. Caruth, and J.-J. Huang, “Device technolo-
gies for rf front-end circuits in next-generation wireless communica-
tions,” Proceedings of the IEEE, vol. 92, no. 2, pp. 354–375, 2004.

[3] A. Kalis, A. G. Kanatas, and C. B. Papadias, “A novel approach to mimo
transmission using a single rf front end,” IEEE Journal on Selected Areas
in Communications, vol. 26, no. 6, pp. 972–980, 2008.

[4] B. Paul, A. R. Chiriyath, and D. W. Bliss, “Survey of RF communi-
cations and sensing convergence research,” IEEE Access, vol. 5, pp.
252–270, 2016.

[5] A. R. Chiriyath, B. Paul, and D. W. Bliss, “Radar-communications con-
vergence: Coexistence, cooperation, and co-design,” IEEE Transactions
on Cognitive Communications and Networking, vol. 3, no. 1, pp. 1–12,
2017.

[6] A. Herschfelt, A. R. Chiriyath, S. Srinivas, and D. W. Bliss, “An
introduction to spectral convergence: Challenges and paths to solutions,”
in 2021 1st IEEE International Online Symposium on Joint Communi-
cations & Sensing (JC&S). IEEE, 2021, pp. 1–6.

[7] A. Herschfelt, “Vehicular rf convergence: Simultaneous radar, commu-
nications, and pnt for urban air mobility and automotive applications,”
in 2012 IEEE Radar Conference (RadarConf20). IEEE, 2020.

[8] O. Ma, A. Herschfelt, H. Yu, S. Wu, S. Srinivas, Y. Li, H. Lee,
C. Chakrabarti, and D. W. Bliss, “Communications and high-precision
positioning (chp2): Secure traffic and resource management using rein-
forcement learning,” in 2020 AIAA/IEEE 39th Digital Avionics Systems
Conference (DASC). IEEE, 2020, pp. 1–6.

[9] O. Ma, A. R. Chiriyath, A. Herschfelt, and D. W. Bliss, “Cooperative
radar and communications coexistence using reinforcement learning,” in
2018 52nd Asilomar Conference on Signals, Systems, and Computers.
IEEE, 2018, pp. 947–951.

[10] D. W. Bliss and S. Govindasamy, Adaptive Wireless Communications:
MIMO Channels and Networks. New York, New York: Cambridge
University Press, 2013.

[11] J. R. Guerci, Space-Time Adaptive Processing for Radar. Norwood,
Massachusetts: Artech House, 2003.

[12] R. Uhrie, D. W. Bliss, C. Chakrabarti, U. Y. Ogras, and J. Brunhaver,
“Machine understanding of domain computation for Domain-Specific
System-on-Chips (DSSoC),” in Open Architecture/Open Business Model
Net-Centric Systems and Defense Transformation 2019, R. Suresh, Ed.,
vol. 11015, International Society for Optics and Photonics. SPIE, 2019,
pp. 180 – 187. [Online]. Available: https://doi.org/10.1117/12.2519264

[13] J. Mack, N. Kumbhare, A. NK, U. Y. Ogras, and A. Akoglu, “User-space
emulation framework for domain-specific soc design,” in 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2020, pp. 44–53.

[14] J. Mack, N. Kumbhare, R. Uhrie, A. Krishnakumar, S. Arda, L. Chang,
A. Amarnath, R. Dreslinski, C. Chakrabarti, U. Ogras, and A. Akoglu,
“Automating Programming and Development of Heterogeneous SoCs
with LLVM Tools,” Talk at LLVM Devroom, 2020 Free and Open-
source Software Developers’ European Meeting (FOSDEM), Brussels,
Feb 2020.

[15] J. Mack, N. Kumbhare, S. Hassan, M. Castro, S. Arda, L. Chang,
J. Brunhaver, C. Chakrabarti, U. Ogras, and A. Akoglu, “Runtime
Strategies and Task Scheduling of Software-Defined Radio on Hetero-
geneous Hardware,” Talk at LLVM Devroom, 2021 Free and Open-
source Software Developers’ European Meeting (FOSDEM), Brussels,
Feb 2021.

[16] A. A. Goksoy, A. Krishnakumar, M. S. Hassan, A. J. Farcas, A. Akoglu,
R. Marculescu, and U. Y. Ogras, “DAS: Dynamic adaptive scheduling
for energy-efficient heterogeneous SoCs,” IEEE Embedded Systems
Letters, 2021.

[17] A. Krishnakumar, S. E. Arda, A. A. Goksoy, S. K. Mandal, U. Y.
Ogras, A. L. Sartor, and R. Marculescu, “Runtime task scheduling
using imitation learning for heterogeneous many-core systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 11, pp. 4064–4077, 2020.

[18] A. L. Sartor, A. Krishnakumar, S. E. Arda, U. Y. Ogras, and R. Mar-
culescu, “Hilite: Hierarchical and lightweight imitation learning for
power management of embedded socs,” IEEE Computer Architecture
Letters, no. 01, pp. 63–67, jan 2020.

[19] X. Chen, U. Ogras, and C. Chakrabarti, “Probabilistic risk-aware
scheduling with deadline constraint for heterogeneous socs,” ACM
Trans. Embed. Comput. Syst., vol. 21, no. 2, feb 2022. [Online].
Available: https://doi.org/10.1145/3489409

[20] S. E. Arda, A. Krishnakumar, A. A. Goksoy, N. Kumbhare, J. Mack,
A. L. Sartor, A. Akoglu, R. Marculescu, and U. Y. Ogras, “DS3:
A system-level domain-specific system-on-chip simulation framework,”
IEEE Transactions on Computers, vol. 69, no. 8, pp. 1248–1262, 2020.

447

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 14,2024 at 15:39:02 UTC from IEEE Xplore. Restrictions apply.

