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Abstract—RF system development is traditionally con-
strained by a restrictive trade-off between power efficiency and
programmatic flexibility. We outline a path towards achieving
both, thereby enabling a range of new system concepts that
better utilize limited resources. As an example, for many future
applications, we consider RF convergence – reusing the same
spectrum and waveforms to achieve multiple distributed system
functions and goals, simultaneously. To enable this next step in
processing, we develop a novel framework that includes both
software and the system-on-chip (SoC) design.

Index Terms—Communications; wireless; radar; positioning,
navigation, and timing; processing; and computers.

I. INTRODUCTION

For a variety of good engineering reasons, most of the
use of the spectrum has historically been relatively rigid.
Communications; radar; positioning, navigation, and timing;
and other systems have been carefully spectrally isolated,
often with inflexible standards. To efficiently implement these
functions historically required rigid implementations. Because
of advances in flexible frontend technologies [1]–[3] and new
flexible, efficient computational capabilities – the focus of
this paper – we enable novel, flexible, efficient use of the
spectrum, such as radio frequency (RF) convergence. We
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use the term RF to indicate a broad range of frequencies
from low to terahertz. The use of convergence indicates the
implementation of multiple simultaneous functions through
intelligent spectrum sharing [4], [5].

Many modern platforms for these capabilities – whether
handheld, IoT device, small UAS, or even cubesat – have
significant limitations on power consumption and heat dis-
sipation. The maximum power consumption can be as low
as 100 mW to a few Watts. We show that many interest-
ing applications require somewhere between a fraction of a
TOp/s to several. Thus, we need processor efficiency on the
order 1 TOp/s/W or more, similar to full-custom, application-
specific integrated circuits (ASICs). To enable complicated,
flexible, multiple function RF convergence systems, we re-
quire these implementations to be easily programmable and
continuously reconfigurable, similar the scalar processors in
our laptop computer, which have orders of magnitude poorer
efficiency than ASICs, as we depict in Figure 1.

To address the difficulties in programming such a processor,
we developed an example coarse-scale heterogeneous system-
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Fig. 1. Comparison of processing power efficiency for RF signal processing
applications as a function of processor architecture and node size. To some
extent, node size is a surrogate for time, as integrated circuit feature size
continues to shrink. We compare examples of full-custom, application-specific
integrated circuits (ASICs), field-programmable gate arrays (FPGAs), graphi-
cal processing units (GPUs), vector processors, and scalar general processors.
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on-chip (SoC) and a supporting compile-time and run-time
software suite. We denote our computational approach the
Domain-focused Advanced Software-reconfigurable Hetero-
geneous (DASH) SoC framework. Our framework includes
compile-time and run-time software and a general approach
for SoC architectures.

Here it is worth noting that not all operations are the same
cost. While one can find very high efficiency for certain types
of computations that employ relatively low computational
dynamic range – machine learning engines, for example –
many important operations for RF systems need relatively high
computational dynamic range with complex variables, so we
focus on this class of operations.

In Section II, we introduce RF convergence. In Section
III, we provide estimates of computational costs for example
RF applications. In Section IV, we detail our framework
to implement coarse-scale heterogeneous processors, and to
address associated challenges.

II. RF CONVERGENCE

The concept of RF convergence [4]–[7] covers a range
of techniques. The fundamental idea is that RF systems are
sufficiently flexible to perform multiple functions simultane-
ously. We often consider the examples of communications,
radar, and PNT, but other applications that employ the RF
spectrum can be incorporated as well. We assume that radiated
RF waveforms can be used for multiple functions, simulta-
neously. Similarly, we assume receivers can extract multiple
types of information from received signals and potentially
disentangle disparate temporally and spectrally overlapping
waveforms from multiple sources. Ideally, system resources
(spectral occupancy, waveforms, energy, receiver degrees of
freedom, etc.) are continuously optimized to achieve the best
overall system performance. In general, there is some high-
dimensional space of performance metrics [6]–[9]. In this
space, there is a manifold of best-case joint performance, as
notionally depicted in Figure 2. By varying system parameters,
we can move along this manifold as needed to achieve the
time-varying goals of the system, which potentially consists
of a large number of nodes, each with its own goals and
capabilities.
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Fig. 2. For a space of joint performance metrics – for example, radar,
communications, sensing – there exists a manifold of best performance for a
given set of spectral, hardware, and processing resources. As the distributed
system’s needs vary, system parameters – such as waveform, power, and
processing – are modified to best achieve overall multiple-function system
goals.

III. COMPUTATIONS

As a motivation for advanced processors, we consider the
computational complexity of a subset of tasks useful for RF
convergence applications. Specifically, we evaluate computa-
tional complexity for communications and radar processing
examples.

As an example radar application, we consider correlation-
based pulse-Doppler processing. For nR range bins and nD

Doppler bins, the complex image M ∈ CnD×nR is given by

M = FZS† , (1)

where ·† indicates Hermitian conjugate, F ∈ CnD×nR is
the discrete Fourier transform which is typically implemented
by fast Fourier transform (FFT), Z is the nD number of
pulses (same as Doppler bins) by ns sample data matrix Z ∈
CnD×ns , and S is the nR number of range bin by ns number
of sample reference matrix S ∈ CnR×ns . The computational
complexity is proportional to (nD log nD)nR and nD ns nR

per nD nS collected processing interval (CPI). This trans-
lates to order (nD log nD)nR/(nD ns) = log(nD)nR/ns

and nD ns nR/(nD ns) = nR computations per sample. For
reasonable parameters, the second term dominates, so nR per
sample. To approximate a modern automotive application, let’s
assume 400 MHz of bandwidth with around 250 m of range, so
nR ≈ 650, which corresponds to a good fraction of a TOp/s.

To implement multiple-antenna interference mitigation in
dispersive channels, we use space-time receive beamforming
[10], [11]. The construction of the beamformer is given by

ŝ = w† Z̃data, (2)

w = (Z̃t Z̃
†
t)

−1 Z̃t s
†, (3)

Z̃t =


Zt,δ1

Zt,δ2
...

Zt,δnd

 , (4)

where the number of receive antenna nr by number of samples
ns space-time data matrix that contains training data is given
by Z̃t ∈ C(nr·nd)×ns . The number of tap delays incorporated
into the data matrix is given by nd. We use Zt,δm ∈ Cnr×ns

to indicate the data matrix shifted in time by δm.
The computational complexity is proportional to

(nr nd)
2 ns for space-time covariance estimation, (nr nd)

3 for
matrix inversion, (nr nd)ns for cross-covariance estimation,
and (nr nd)ndata for filter application per communications
data frame or super frame. Of these terms, the space-time
covariance estimation is typically the most expensive. It
would not be surprising to require beamforming updates
every few milliseconds. For a system with nr = 8 antennas,
a delay range of nd = 15 taps, and ns = 10 nr nd, we have
order of magnitude complexity of 10 (nr nd)

3 – on the order
of 100 GOp/s.

A useful tool for RF convergence is temporal interference
mitigation, which is effectively a projection operation. Here,
we project onto a basis that is orthogonal to a signal sequence
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and some delayed versions of that sequence. As an example,
consider an nr multiple antenna receiver providing the ns

sample data matrix Z ∈ Cnr×ns . To remove known or
estimated sequence s ∈ C1×ns and delayed versions of this
sequence (sδm ), we implement

Z′ = ZP⊥
S (5)

= Z− (ZS†) (SS†)−1 S (6)

S =


sδ1
sδ2

...
sδN

 , (7)

where Z′ ∈ Cnr×ns is the data matrix with s removed. The
number of complex operations for this task are proportional
to n3

d, nr ns nd, and n2
d ns per ns samples. Because ns is

typically large compared to either nr or nd, the largest term
is either n2

d ns or nr ns nd. The cost per sample is proportional
to n2

d or nr nd. An 8-antenna system with 8-delay mitigation
would require 100s of operations per sample. If the sample
rate is order 100 MHz, the task would cost multiple 10s of
GOp/s.

By considering the Tanner graph representation (as we
depict in a toy example in Figure 3) of a low-density parity
check (LDPC) code, we observe that number of operations
per decoding iteration is proportional to at least the sum of
paths connecting to each data vertex times the number of data
vertices plus the sum of paths connecting to each parity check
vertex times the number of parity check vertices. We consider
an LDPC code with density α, with k information bits and
code length n. We assume belief propagation is employed to
decode with niter iterations. If the density nonzero entries in
the parity check matrix is α, then the cost at each of the
αn variable nodes is roughly proportional to [α (n − k)].
The cost at each of the α (n − k) parity check (factor)
nodes is roughly proportional to αn. The computational cost
of decoding includes terms approximately proportional to
[αn]α (n − k)niter and [α (n − k)]αnniter, with different
coefficients, per n received likelihoods. By using typical
parameters, it is easy to expect order hundreds of operations
per information bit, so 100 Mb/s would correspond to order
hundred GOp/s.

IV. HETEROGENEOUS PROCESSOR FRAMEWORK

We want a processor that can simultaneously perform the
above tasks and many more. We need the implementation to
be flexible, so resources can be adaptively used as application
loads asynchronously wax and wane. We want to make these
tasks relatively easy to program, and be able to add new
application tasks without having to modify old tasks. All these
tasks need to be performed with much greater efficiency than
general processors would allow.

These requirements drive us to domain-specific coarse-
scale heterogeneous SoC solutions. As we indicate in the
notional task vs computational cost plot in Figure 4, there
are typically a small number of tasks that consume most
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Fig. 3. Notional depiction of bipartite Tanner graph. Decode an LDPC code
by updating likelihoods back and forth across sides of the graph.

of the computational resources, while many tasks consume
relatively little. Naturally, we focus our engineering efforts
on accelerating those computational kernels that represent the
largest computational costs.
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Fig. 4. Notional distribution of key computational kernel costs for an
interference-mitigating multiple-antenna receiver for an orthogonal frequency
division multiplexing (OFDM) waveform. The notation FFT indicates the fast
Fourier transform. QR indicates a matrix decomposition that is often used as an
intermediate step for matrix inversion. FEC indicates forward error correction.

DASH Framework – As we depict in Figure 5, we devel-
oped a framework that enables the efficient implementation
of RF processing applications. This spans a wide range of
timelines, from SoC design, to code analysis, to compile-time,
to run-time, to the intelligent scheduler (IS) adaptively making
resource management decisions within a few nanoseconds to
enable multiple applications to operate simultaneously and
asynchronously.

Ontological Analysis – We analyze dynamic program traces
to determine the flow of the program. We developed analysis
tools that discover computational kernels, label these kernels,
and produce parallel task graphs [12]. This information can
be used to optimize SoC layout and to provide task graph
information to the run-time software and intelligent scheduler.

Compile-Time and Run-Time Software – In our compile-
time environment, we leverage our knowledge of accelerated
kernels and produce “fat” binaries that incorporate multiple
implementation approaches within the executable [13]–[15].
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Fig. 5. The domain-focused advanced software-reconfigurable heterogeneous (DASH) framework incorporates a compile-time and run-time software suite
along with an approach for designing advanced heterogeneous SoCs. The software informs and enables the intelligent scheduler (IS) to adaptively manage
SoC resources.

For example, the FFT can be executed on the ARM processor,
the DAP, and most efficiently on the FFT accelerator. In our
run-time environment, the run-time software works with the
intelligent scheduler to select the best version of the binary to
execute.

IS – To enable real-time adaptive SoC resource management
for scenarios that have multiple simultaneous applications run-
ning, we developed an intelligent scheduling (IS) capability.
Because resource needs can vary dramatically and quickly, the
IS is a necessary technology. It would be impossible to hand-
schedule tasks in environments in which new applications
are being added and removed in real time. Our IS employs
a combination of approaches to reduce scheduling latency
[16]. In static scenarios, the IS keeps the current resource
allocation strategy. When there is a status change, we employ
an imitation learning (IL) approach that was trained on high-
performance strategies. Our implementation of IL allows us
to execute resource allocation decisions more rapidly than the
reference high-performance strategies [17]–[20].

DASH SoC – We developed an enabling SoC architecture.
As seen in Figure 6, we incorporated a cluster of ARM
processors for general processing, a fast on-chip network,
and a number of on-chip accelerators. We have dedicated
accelerators for FFTs and finite-impulse-response (FIR) filters.
We have developed a flexible forward error correction (FEC)
decoder that efficiently implements a range of codes including
turbo, low-density parity check, and polar codes. Prior to chip
fabrication, we cannot know all required basic functions or
kernels of future applications, so we developed a flexible
high-performance systolic array processor, denoted domain-
adaptive processor (DAP).

Flexible FEC – Our flexible FEC accelerator provides
the tools to efficiently implement a range of error-correcting
codes, including turbo, LDPC, and polar. In our preliminary

DASH SoC

MAC CMN-600

Arm Cluster Red

L3
Cache FFT FIR DAP

1

FEC DAP
2Interfaces

IS

Fig. 6. The DASH SoC connects a cluster of ARM processors, accelerators,
and interfaces via a high-speed network on-chip. Accelerators include FFT,
FIR filters, DAPs, and flexible FECs.

efforts, we have shown that the power efficiency for FECs that
can be implemented on the accelerator are as efficient – or at
least within a reasonable factor – of full-custom equivalents.

DAP – Our DAP is a flexible high-performance systolic
array processor that enables the implementation of a range
of kernels. Multiple kernels can be executed simultaneously
across the DAP. Furthermore, the functionality of the DAP
can be nearly instantaneously changed as tasks change. For
a range of kernels, we have empirically shown that the DAP
is as efficient – or at least within a reasonable factor – of
full-custom equivalents

V. SUMMARY

We developed an approach that enables efficient processing
by employing coarse-scale heterogeneous processors. Unlike
some prior related efforts, we provide the framework to enable
flexibility and relatively easy programming. From a system
engineer’s perspective, the DASH framework opens numer-
ous new opportunities for flexibly and dynamically matching
computations to the environmental and system’s needs.
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