
2168-2364/23©2023 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test70

General Interest

FALCON: An FPGA
Emulation Platform for
Domain-Specific SoCs
(DSSoCs)

Digital Object Identifier 10.1109/MDAT.2023.3291331

Date of publication: 30 June 2023; date of current version:

22 January 2024.

Anish Krishnakumar
Department of Electrical and Computer

Engineering
University of Wisconsin-Madison
Madison, WI 53706 USA

Hanguang Yu
Center for Wireless Information Systems and

Computational Architectures (WISCA)
Arizona State University
Tempe, AZ 85281 USA

Tutu Ajayi
Department of Electrical Engineering and

Computer Science (EECS)
University of Michigan
Ann Arbor, MI 48109 USA

A. Alper Goksoy and Vishrut Pandey
Department of Electrical and Computer

Engineering
University of Wisconsin-Madison
Madison, WI 53706 USA

Joshua Mack and Sahil Hassan
Department of Electrical and Computer

Engineering
The University of Arizona
Tucson, AZ 85721 USA

Kuan-Yu Chen
Department of Electrical Engineering and

Computer Science (EECS)
University of Michigan
Ann Arbor, MI 48109 USA

Chaitali Chakrabarti and Daniel W. Bliss
Center for Wireless Information Systems and

Computational Architectures (WISCA)
Arizona State University
Tempe, AZ 85281 USA

Ali Akoglu
Department of Electrical and Computer

Engineering
The University of Arizona
Tucson, AZ 85721 USA

Hun-Seok Kim, Ronald G. Dreslinski, and
David Blaauw
Department of Electrical Engineering and

Computer Science (EECS)
University of Michigan
Ann Arbor, MI 48109 USA

Umit Y. Ogras
Department of Electrical and Computer

Engineering
University of Wisconsin-Madison
Madison, WI 53706 USA

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 01,2024 at 21:44:01 UTC from IEEE Xplore. Restrictions apply.

71January/February 2024

 With the sloWdoWn of Moore’s law, the abil-
ity of traditional homogeneous processors and single
instruction set architecture (ISA) heterogeneous mul-
ticore architectures to satisfy the power and perfor-
mance requirements has saturated [1]. Graphics pro-
cessing units (GPUs), digital signal processors (DSPs),
and hardware accelerators significantly improve the
efficiency metrics at the cost of user programmability.
Domain-specific SoC (DSSoC) architectures, which
are a specific realization of heterogeneous architec-
tures, bridge the gap between programmability and
energy efficiency by smartly combining general-pur-
pose, special-purpose, and hardware accelerator
cores. The special-purpose and hardware accelerator
cores strive to maximize the energy efficiency of appli-
cations in a targeted domain and the general-purpose
processors provide programming flexibility [2].

SoC architectures, particularly DSSoCs, face
monumental design and verification efforts due to
rapidly increasing design sizes and complexities
[3]. Fabricating a fully functional DSSoC design
from scratch requires significant time, effort, and
resources. Functional and performance bugs in
these complex chips postfabrication result in
unprecedented costs. Therefore, stringent presili-
con verification techniques such as RTL simulation,
gate-level simulation, formal verification, FPGA
emulation, and prototyping frameworks are used
to detect bugs in the early design stages. Further-
more, making even incremental design changes,
such as adding a new accelerator, requires new
spinoffs with similar costs. FPGA emulation is spe-
cifically used to address these challenges and offers
the following advantages [4]: 1) enables execution
of real-world workloads on the full system (signifi-
cantly faster than simulation); 2) allows early firm-
ware and software development; and 3) facilitates
faster time-to-market. While FPGAs have been used
in NoC and special-purpose architecture prototyp-
ing [5], [6], [7], [8], end-to-end frameworks do not
exist for the emulation and prototyping DSSoCs on
a Linux-based operating system (OS).

This article proposes
FALCON, an end-to-end
FPGA-based emulation
framework, to prototype
DSSoCs for rapid design,
presilicon functional
validation, and perfor-
mance evaluation. FAL-

CON provides an accelerator sandbox, which uses
standard advanced microcontroller bus architecture
(AMBA)-based interfaces to the rest of the SoC. The
accelerator sandbox improves developers’ produc-
tivity by providing a plug-and-play environment to
include, remove, and modify hardware accelerators.
FALCON also allows designers to develop drivers for
nonstandard ISA designs, software, and firmware
before the chip is available. It also enables what-if
analysis with different hardware configurations and
domain applications can be done much faster (in
our experience in a few weeks) than waiting for the
final chip. Finally, FALCON interfaces with compil-
er-integrated extensible DSSoC runtime (CEDR) [2],
a software runtime framework, to allow applications
to be seamlessly executed in a DSSoC.

FALCON architecture
This section describes FALCON’s full-system archi-

tecture for DSSoC design and emulation, as outlined
in Figure 1. FALCON is composed of the hardware
platform and the software stack. While these com-
ponents are typical in any SoC, DSSoCs are highly
customized to maximize the energy efficiency of
domain applications. The hardware platform inte-
grates general-purpose cores that offer program-
mability, hardware accelerators, and specialized
processors for energy efficiency, a high-speed inter-
connect for low-latency on-chip data movement,
last-level cache (LLC), peripherals, and debug logic.
After synthesis and automatic place-and-route, the
entire hardware architecture is packaged into a bit-
stream to program the programmable logic (PL) on
the FPGA. The software stack comprises the Linux OS
kernel, file system, and embedded system software
components such as the boot firmware and U-boot.
All components in the software stack are integrated
into a software image, which is programed into the
FPGA flash memory. Then, applications run on the
underlying hardware of the DSSoC with the use of
software runtime environments, such as CEDR and
SPARTA [2], [9].

Editor’s notes:
This article presents FALCON, a full-system domain-specific system-on-
chip emulation platform that enables presilicon power and performance
estimation of these platforms to provide support for early functional
validation and software development.

—Sudeep Pasricha, Colorado State University, USA

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 01,2024 at 21:44:01 UTC from IEEE Xplore. Restrictions apply.

72 IEEE Design&Test

General Interest

Hardware architecture
The FALCON hardware architecture is con-

structed using three major components: 1) base sys-
tem; 2) accelerator sandbox; and 3) miscellaneous
hardware, controllers, and peripherals in the FPGA.
The framework organizes the energy-efficient pro-
cessors into the accelerator sandbox and the gener-
al-purpose processors with the on-chip system-level
interconnect into the base system. In addition to
the base system and the sandbox, FALCON includes
peripherals, controllers, and other hardware, as
shown in Figure 1.

Base system
The base system forms the general-purpose

subsystem of the DSSoC. FALCON utilizes Arm’s
Corstone700 as the base system. Corstone-700 is a
flexible and configurable subsystem that houses
the 32-bit Arm Cortex-A32 cores as the processing
cluster. It also provides easy and flexible interfaces
to integrate other system components and peripher-
als. The number of Cortex-A32 cores is configurable
between 1 and 4. An advanced extensible inter-
face (AXI)-based interrupt controller distributes the
interrupts to the different on-chip components. The
secure enclave and CoreSight unit provides security

and debug services. CoreSight facilitates functional
and performance debugging. We note that the ratios
of all clock frequencies are maintained to maintain
accuracy with the final tape-out. The flexibility of the
architecture allows the base subsystem to be easily
swapped with other Corstone subsystems or poten-
tially with different types of host systems.

Accelerator sandbox
The design and integration of components in a

DSSoC are highly complex due to the large number
and diverse processing elements. Therefore, the
exploration phase involves frequent addition, modi-
fication, and removal of accelerators in a DSSoC. To
address this concern, FALCON employs a modular-
ized implementation of the interfacing of hardware
accelerators with the base system. The accelerator
sandbox is an independent module that uses stand-
ard AXI interfaces to connect to the system-level
interconnect. The sandbox approach allows the
rest of the system to observe only the AXI interfaces
from the sandbox. It is oblivious to its internal archi-
tecture, providing a plug-and-play mechanism for
integrating hardware accelerators. This architecture
assumes that each accelerator can master the mem-
ory bus or work closely with other accelerators or

Figure 1. Overview of the key components and organization of the FALCON framework for DSSoC
emulation on FPGAs. The hardware architecture and design (shown on the left) is programed as
a bitstream onto the programmable fabric. The software image (shown on the right) is programed
to the onboard flash memory. The accelerator sandbox includes a flexible SAP that efficiently
implements operations such as FFT, matrix multiplication, and complex vector addition,
subtraction, multiplication, and division.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 01,2024 at 21:44:01 UTC from IEEE Xplore. Restrictions apply.

73January/February 2024

direct memory access (DMA) engines to transfer
data to the system. The sandbox provides interrupt
lines to the accelerators to indicate control transfer
to the base subsystem. The sandbox uses four AXI
initiator-responder channels. Designers map the
chosen number of channels among the different
hardware accelerators and their data streams based
on the latency, bandwidth, and throughput require-
ments. A DSSoC that targets wireless communication
and radar applications may integrate accelerators
for fast Fourier transform (FFT), matrix multiplica-
tion, and a systolic array processor (SAP) to accel-
erate frequently encountered tasks as illustrated in
Figure 1. The flexibility of the SAP enables us to exe-
cute several functionalities in the domain of interest
with customized programming interfaces. The plug-
and-play mechanism allows designers to provide
intrasandbox communication between accelerators
to improve data movement latencies. The sandbox
can easily be extended to support multiple clocks
and resets if the accelerators are required to operate
at different frequencies.

On-chip system interconnect
With the diverse processing elements on the

chip, data movement is critical to ensure that the
hardware has the necessary inputs to perform the
required computation. Developers may choose to
integrate low-latency mesh NoC interconnects (such
as Arm CMN-600) or low-power crossbar-based inter-
connects (such as Arm NIC-400).

While the base system and system-level intercon-
nect use Arm-based components, FALCON is not
limited to Arm-based systems, and developers are
free to integrate processing elements and intercon-
nects of their choice. We note that the software stack
(described in the upcoming subsection) would
need appropriate updates to support the hardware
choices.

Software stack
DSSoCs demand an extensive software stack to

exploit the full potential of the hardware architecture
and provide comprehensive programming support
to end-users and developers. FALCON is based on
the Arm Corstone-700 base system. Hence, it utilizes
the Arm reference platforms to produce the software
stack [10]. The Arm reference platforms are based
on the Yocto project to build customized Linux dis-
tributions. While this section describes configuring

the Arm reference platforms for FALCON, the meth-
odology is generic since the Yocto project is widely
used to produce Linux distributions and software
stacks. We emphasize that this software stack is fully
deployable with standard security, virtualization,
and the guarantees of a full-fledged Linux-based
embedded system. This section focuses more on the
specific configurations for the DSSoC configuration
prototyped in this work.

The software stack integrates the following com-
ponents to produce the entire software stack (as
shown in Figure 1): 1) Linux kernel; 2) boot firm-
ware; 3) trusted firmware; 4) U-boot; 5) root filesys-
tem; and 6) application packages. The interactions
between these components are captured in Figure 2.

Linux kernel
The primary responsibilities of the kernel include:

1) memory management; 2) process management; 3)
device drivers; and 4) system calls and security. To
support the hardware described in the previous sub-
section, FALCON makes the following modifications
to the base configuration [10] for the Linux kernel.

• Enable multicore support through symmetric
multiprocessing feature.

• Configure input–output memory management
unit (IOMMU) for multiple cores.

• Enable kernel debugging capabilities.
• Configure power state coordination interface

(PSCI) for multiple cores.
• Modify address pointers and image size of the

software stack image stored in the flash memory.

Boot firmware
The boot firmware is the software for the secure

enclave in the hardware architecture [10]. From the
user perspective, the components that should be
modified are firewall access, system-wide memory
map definitions, and interconnect initialization. The
firewall determines the accessible/restricted memory
regions of: 1) the root file system; 2) the Linux kernel;
and 3) the main memory. The boot firmware is com-
piled into a binary that is then built into the secure
enclave hardware. Embedding the boot firmware into
the hardware has a major implication in the DSSoC
validation process, and this is precisely where early
software development supported by FALCON plays
a crucial role in developing bug-free and fully-func-
tional SoCs (described in the upcoming section).

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 01,2024 at 21:44:01 UTC from IEEE Xplore. Restrictions apply.

74 IEEE Design&Test

General Interest

U-Boot
This software comprises a first-stage boot loader

(FSBL) and a second-stage boot loader (U-boot). It
is the primary component that handles hardware
initialization and control hand-off to the OS for the
booting process. FALCON modifies the Linux kernel
address based on its size in the software image and
the device tree address in U-Boot.

Trusted firmware
The trusted firmware in FALCON comprises the

critical security software for Arm-based processor
systems. The default Corstone-700 stack boots only
one Arm core. One of the most critical components is
the PSCI which is the interface for managing the idle
cores, booting the secondary cores, and system shut-
down/reset. FALCON modifies the PSCI firmware to
power on the secondary cores and enables realtime
access to multiple cores. FALCON also adds helper
threads with assembly code to initialize and boot the
secondary cores. The secondary core information is
also specified in the device trees as entries in 1) the
PSCI interfaces and 2) central processing unit (CPU)
cores. The device tree binary is built as part of the
trusted firmware in FALCON’s software stack.

Root filesystem
The OS’s root filesystem (rootFS) contains the

files and directories critical to the system’s opera-
tion. By default, the Corstone-700 reference software

stack provides a read-only file system. This require-
ment forces all the critical packages and features to
be built into the rootFS during the build process. The
packages to be integrated into the rootFS determine
its size. It is also critical to reduce the rootFS size to
minimize the boot time.

User application packages
The user applications range from libraries that

include application programming interfaces (APIs)
to exercise the hardware accelerators to workloads,
benchmarks, profilers, and performance monitors.
The domain workload and benchmark source codes
are cross-compiled for the specific Arm architecture
(32-bit Arm v8 architecture in FALCON) and pack-
aged into the software stack. Additionally, perfor-
mance-monitoring tools, such as perf that uses the
performance-monitoring unit (PMU) to monitor the
CPU pipelines and the interconnect, can be inte-
grated to enable runtime performance monitoring
and evaluation. The FALCON emulation framework
utilizes the CEDR runtime framework, which is also
deployed as a user application package.

Software runtimes
In this study for our experimental evaluations, we

utilize the CEDR [2] ecosystem to conduct a design
space exploration over the heterogeneous architec-
ture emulated on the FPGA. This system allows end
users to compile their applications for execution on

Figure 2. Timeline of the hardware development process and the boot sequence in software for a
DSSoC emulated by the proposed FALCON framework.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 01,2024 at 21:44:01 UTC from IEEE Xplore. Restrictions apply.

75January/February 2024

a heterogeneous architecture and then interact with
hardware by launching a workload composed of any
number and combination of different applications
with user-specified arrival rates. We choose CEDR over
other runtime frameworks [11], [12] since it enables
the compilation and development of user applications
for heterogeneous SoCs, evaluating the performance
of presilicon heterogeneous hardware configurations
based on dynamically arriving workload scenarios
through distinct plug-and-play integration points in a
unified workflow. Furthermore, CEDR offers a rich set
of integrated scheduling policies, allows integration
of new policies through its distinct plug-and-play inter-
faces, offers collecting performance counter-based
performance evaluation through “perf” utility, and,
more importantly, enables conducting design space
exploration in the trade space of hardware compo-
sition, workload complexity, and scheduling policy
over the user-defined performance metrics.

Enabling software and driver
development

The efforts involved in software design and driver
development for DSSoCs are substantially higher
due to the presence of hardware accelerators and
specialized cores. Software development after fabri-
cation significantly delays the time-to-market. To this
end, presilicon FPGA-based emulation frameworks
serve as a platform for software development and
hardware–software codesign cycle.

Accelerator drivers
While general-purpose cores have a well-estab-

lished programming methodology in terms of pro-
gramming languages and compilation toolchains, the
hardware accelerator interfaces are mainly ad-hoc.
They may not follow predefined protocols and lan-
guages. The interface to a hardware accelerator
involves the following aspects: 1) a configuration
interface that allows the user to configure the acceler-
ator based on the application parameters; 2) a control
interface that manages its initialization, starting, and
completion; and 3) data interface for the inputs and
outputs. It is critical to validate these interfaces and
data transfer protocols in the design stage. Another
aspect involves determining the optimal burst size for
input and output data transfers and the memory hier-
archy. Current approaches in the literature include
analytical and performance models to estimate
these effects, but the modeling accuracy limits them.

Moreover, they are often evaluated with only por-
tions of the system. FALCON enables evaluation in a
full-system real-platform-like environment, providing
highly accurate performance estimates. The precise
evaluation allows designers to redesign the hardware
and software architecture and interfaces as neces-
sary to maximize metrics, including performance,
throughput, bandwidth, and energy efficiency.

Enabling performance-monitoring unit
The PMU records architectural and microar-

chitectural events and provides key performance
indicators (KPIs). KPIs allow users to profile the
applications and fine-tune the system parameters
and architecture to maximize performance. Ena-
bling the PMU in FALCON requires several changes
to the software stack. First, the following features are
enabled in the Linux kernel: 1) CONFIG_PROFILING;
2) CONFIG_PERF_EVENTS; 3) CONFIG_ARM_PMU;
and 4) CONFIG_HW_PERF_EVENTS.

The size of the Linux kernel in the software image
increases when the PMU is enabled. This increase
changes the address offsets and the size parameters
in the boot firmware and the U-boot, as described
in the previous subsection. While the above mod-
ifications described are in the software stack, they
strongly affect the hardware design. As described in
the previous subsection, the boot firmware includes
addresses and sizes of the Linux kernel, rootFS, and
the main memory, which are used in the secure
enclave firewall. This information is packaged into
the hardware design, making it infeasible to update
these parameters after the fabrication. To this end,
FALCON enables all these hardware–software code-
sign aspects to ensure that the fabricated chip sup-
ports all intended features and functionality.

Demonstrations Using FALCON
FALCON aids chip developers in performing

functional design validation, identifying the optimal
data flow for hardware accelerators, analyzing per-
formance bottlenecks using hardware performance
counters, and even performing early presilicon power
evaluations. This article demonstrates the capabilities
of FALCON for wireless communication and radar/
signal-processing application domain. The appli-
cations in these domains frequently exercise FFT,
matrix multiplication and vector addition, subtrac-
tion, multiplication, and division operations, which
are extensively evaluated in this section. FALCON

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 01,2024 at 21:44:01 UTC from IEEE Xplore. Restrictions apply.

76 IEEE Design&Test

General Interest

is evaluated using three Xilinx FPGA devices: Zynq

UltraScale+ ZCU102, Virtex UltraScale+ VCU128, and

Virtex UltraScale+ VU19P. Only the accelerator sand-

box is deployed on the ZCU102 since it includes preb-

uilt Arm Cortex-A53 cores (Zynq base system). We

leverage the CEDR runtime environment to launch

and run the target applications.

Enabling software development and functional
validation

We developed software drivers for the hardware

accelerators in the sandbox, which send and receive

data from the system using DMA units. We generate
random stimuli as inputs to the hardware accelera-
tors. The outputs of the accelerators are compared
with a reference software implementation for func-
tional validation and precision evaluation.

For the FFT accelerator, we evaluated trans-
form sizes from 32 to 2,048 (in multiples of 2)
as shown in Figure 3. The number of precision
mismatches remains at fewer than three per-kilo
computations. A larger transform size experiences
higher mismatches due to a higher number of
floating-point multiplication and accumulation
operations. The fixed-size complex matrix multi-
plication accelerator experiences an average of
one precision mismatch per-kilo computations.
On average, more than 99.9% of the values in the
computations match the software implementation
within a 0.1% difference.

The SAP accelerator is implemented with 16-bit
fixed-point precision to tradeoff accuracy for perfor-
mance and power consumption. The goal behind
this idea is to use high-precision fixed-function
accelerators for precision-demanding applications
such as wireless communications and flexible ener-
gy-efficient accelerators for radar system applica-
tions. Figure 4 presents the accuracy (in percent)
and mismatches per-kilo computations for various
operations in the SAP. Except for vector division,
other operations achieve a minimum of 93% accu-
racy compared to the respective software implemen-
tations. Since division is a highly complex operation,
it suffers from larger accuracy differences because of
the fixed-point implementation (especially for larger
sizes). We note that these results well align with the
requirements of radar applications.

FALCON specifically allows all these explora-
tions before fabrication to evaluate functionality,
precision, and accuracy for different applications
in the domain. In summary, the framework enables
software driver development, functional validation
of the drivers, and accelerators when exercised
with the full system and evaluation of the precision
requirements.

Optimizing DSSoC configuration for domain
applications

Hardware accelerators introduce the notori-
ous double-copy problem where the data must be
explicitly transferred from/to them using DMA units.
While fetching the data from the main memory

Figure 3. Number of precision mismatches (primary
axis) per-kilo computations and the percentage of
precise values (secondary axis) of the FFT and matrix
multiplication hardware accelerators with respect to
a reference software implementation in VCU128.

Figure 4. Number of precision mismatches (primary
axis) per-kilo computations and the percentage
of precise values (secondary axis) of the SAP
accelerator (16-bit fixed point implementation) for
vector addition, subtraction, multiplication, and
division (for two sizes: 256 and 1024), FFT (512-point),
and matrix multiplication operations with respect to
reference software implementations in VCU128.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 01,2024 at 21:44:01 UTC from IEEE Xplore. Restrictions apply.

77January/February 2024

capability allows developers to obtain early esti-
mates and observe power consumption trends for
preliminary analysis before the chip is taped out.

FPGA implementation strategy
Although FALCON shares a similar design as

the actual chip, there are a few critical aspects
that must be addressed. First, a failure to generate
the intended gated clocks in the design causes the
tool to use cascaded clocks instead of generating a
clock tree on the FPGA. This failure can also cause
long placement and routing runtimes. While the tool
must automatically generate gated clocks, develop-
ers must carefully check the gated clock conversion
reports after synthesis and manually specify the
clock relationships as required. Second, the design
may instantiate memory modules from a specific
process technology library. We should replace the
memory instantiations with the FPGA memory primi-
tive or a generic memory model. Third, the synthesis,

involves significant latency overheads, the on-chip
scratchpad memory (SPM) has limited capacity.
Figure 5 presents the latency (in thousands of equiv-
alent CPU clock cycles) for 128-, 256-, and 512-point
FFT operations and complex matrix multiplication
computation. The latency improves substantially
with the use of SPM for larger computations (larger
transform sizes). Larger computations require more
memory and experience significant conflicts in the
cache. Therefore, they experience better speedup
when data are transferred using the on-chip scratch-
pad. Through such analyses, FALCON allows us to
optimize the number of processors, cache sizes,
and memory hierarchies for the processing ele-
ments for specific domain applications to maxi-
mize energy efficiency.

Illustration of hardware performance counters
Table 1 presents the hardware counters

(described in the previous subsection) for two imple-
mentations of a matrix multiplication operation. The
two implementations use different loop ordering to
improve data locality in the caches, reflecting fewer
cache misses, and, consequently, fewer computa-
tion cycles and wall time (Table 1). The ability to uti-
lize performance counters in FALCON enables users
and developers to systematically analyze the effects
of code optimization and their impact in terms of
microarchitectural events.

Enabling presilicon power evaluations
Figure 6 presents the power consumption in the

processing system (PS) and programmable logic
(PL) in a ZCU102 FPGA using four Arm Cortex-A53
cores at 1.2 GHz, one FFT, and one complex matrix
multiplication accelerator operating at 100 MHz.
The power consumption is captured using TI INA226
power monitors on the board. We run 100 jobs each
of pulse Doppler and temporal mitigation compiled
for heterogeneous execution and managed using
CEDR [2]. Figure 6 presents the idle and active PS
and PL power for 100 s. At time 0, the PS consumes
1.6 W, while PL consumes 1.322 W when the system
is idle. The PS power increases to 2.2 W when the
applications start execution. The change in PL power
remains insignificant because of its lower operating
frequency and high static/idle power in the FPGA
logic. The PS power reduces at 52 s when pulse Dop-
pler completes and reduces to idle power of 1.6 W
at 58 s when the temporal mitigation also ends. This

Figure 5. Comparison of the hardware accelerator
latencies (in thousands of cycles) when data are
transferred through DDR memory (with and without
coherency) and the on-chip SPM in VCU128.

Table 1. Comparison of hardware performance counter values
between two different software implementations of matrix
multiplication in VCU128 operating at a frequency of 32 MHz.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 01,2024 at 21:44:01 UTC from IEEE Xplore. Restrictions apply.

78 IEEE Design&Test

General Interest

placement, and routing strategy should be tuned to
the specific FPGA and the size of the SoC. We use the
AlternateRoutability for the accelerator sandbox syn-
thesis and the SpreadLogic at the top level. Finally,
we achieve timing closure at 32-MHz main clock fre-
quency on the VCU128 and VU19P FPGAs.

Related work
Emulation frameworks play a crucial role in

enabling presilicon functional validation, software,
driver, and firmware development and are broadly
classified into two categories. Virtual emulators,
such as quick emulator (QEMU) and fast models,
use abstracted functional models to design drivers,
software, and firmware. FPGA-based platforms, rep-
resenting the other class of emulators, are widely
used for NoC and reconfigurable architecture proto-
typing [6], [8]. However, their realization of full-sys-
tem emulation is limited. The cyber-physical SoC in
[7] and an RISC-V accelerator-based system in [4]
emulated on FPGAs are promising examples of full
systems emulated on FPGAs. The framework in [7]
does not support realtime power monitoring and
a full-fledged Linux OS which is critical to enable
full parallelism in the software runtime. The HERO
framework [4] programs RISC-V-based accelerators

in the FPGA but utilize prebuilt Arm cores in the
FPGA and relies on the OpenMP framework for
accelerator programming. Fully custom hardware
accelerators in DSSoCs demand extensive function
and performance validation and support for driver
development. To the best of our knowledge, FAL-
CON is the first emulation platform that supports a
fully customized SoC designed from scratch with
hardware accelerators evaluated on a customized
Linux OS. FALCON performs end-to-end emulation
of DSSoCs to support as-is tape out for fabrication,
which is critical for full system and top-level func-
tional validation.

the groWing design and verification complexi-
ties in DSSoCs and the prohibitive cost of identifying
postfabrication functional and performance bugs
raise the need for sophisticated presilicon evalua-
tion frameworks. Furthermore, the stringent time-
to-market requirements demand the availability of
firmware and software in conjunction with the OS
as soon as possible after the chip becomes availa-
ble. This article presented FALCON, an end-to-end
full-system FPGA-based emulation framework for
DSSoCs that integrates general-purpose processors,
hardware accelerators, memory hierarchies, and
on-chip interconnects to address these challenges.

Figure 6. Illustration of power consumption in the PS (Arm
Cortex-A53 cores operating at 1.2 GHz) and programmable
fabric (hardware accelerators operating at 100 MHz) in a Zynq
UltraScale+ ZCU102 FPGA.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 01,2024 at 21:44:01 UTC from IEEE Xplore. Restrictions apply.

79January/February 2024

FALCON is seamlessly integrated with a software
runtime framework named CEDR to execute both
domain and nondomain applications on the DSSoC
efficiently. FALCON’s hardware architecture and
software stack, coupled with a runtime environment,
enable realistic application execution in a Linux-
based OS and allow full-system functional validation
and early performance estimates. <

Acknowledgments
This work was supported by the Air Force

Research Laboratory (AFRL) and the Defense
Advanced Research Projects Agency (DARPA)
under Agreement FA8650-18-2-7860. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and con-
clusions contained herein are those of the authors
and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either
expressed or implied, of AFRL and DARPA or the
U.S. Government.

 References
 [1] J. Hennessy and D. Patterson, “A new golden age for

computer architecture: Domain-specific hardware/

software co-design, enhanced,” in Proc. ACM/IEEE

45th Annu. Int. Symp. Comput. Archit. (ISCA), Jun.

2018, pp. 27–29.

 [2] J. Mack et al., “CEDR: A compiler-integrated,

extensible DSSoC runtime,” ACM Trans. Embedded

Comput. Syst., vol. 22, no. 2, pp. 1–34, Mar. 2023.

 [3] Z. Han et al., “IP-coding style variants in a multi-layer

generator framework,” in Proc. Design Verification

Conf. Exhib. (DVCon), 2020, pp. 1–6.

 [4] A. Kurth et al., “HERO: Heterogeneous embedded

research platform for exploring RISC-V manycore

accelerators on FPGA,” 2017, arXiv:1712.06497.

 [5] J. Zhang et al., “MEG: A RISCV-based system

emulation infrastructure for near-data processing using

FPGAs and high-bandwidth memory,” ACM Trans.

Reconfigurable Technol. Syst., vol. 13, no. 4, pp. 1–24,

Dec. 2020.

 [6] V. Kumar, M. Mukherjee, and J. Lloret, “Reconfigurable

architecture of UFMC transmitter for 5G and its FPGA

prototype,” IEEE Syst. J., vol. 14, no. 1, pp. 28–38, Mar.

2020.

 [7] S. Sarma and N. Dutt, “FPGA emulation and

prototyping of a cyberphysical-system-on-chip

(CPSoC),” in Proc. 25nd IEEE Int. Symp. Rapid Syst.

Prototyping, Oct. 2014, pp. 121–127.

 [8] S. Lotlikar, V. Pai, and P. V. Gratz, “AcENoCs: A

configurable HW/SW platform for FPGA accelerated

NoC emulation,” in Proc. 24th Int. Conf. VLSI Design,

Jan. 2011, pp. 147–152.

 [9] B. Donyanavard et al., “SPARTA: Runtime task

allocation for energy efficient heterogeneous

manycores,” in Proc. Int. Conf. Hardw./Softw. Codesign

Syst. Synth., Oct. 2016, pp. 1–10.

 [10] Arm Reference Platform for Corstone-700 Subsystem.

Accessed: May 15, 2022. [Online]. Available: https://git.

linaro.org/landing-teams/working/arm/arm-reference-

platforms.git/tag/?h=CORSTONE-700-2020.12.10

 [11] B. Donyanavard et al., “SOSA: Self-optimizing learning

with self-adaptive control for hierarchical system-on-

chip management,” in Proc. 52nd Annu. IEEE/ACM Int.

Symp. Microarchitecture (MICRO), vol. 52. New York,

NY, USA: Association for Computing Machinery, Oct.

2019, pp. 685–698.

 [12] B. Maity et al., “SEAMS: Self-optimizing runtime

manager for approximate memory hierarchies,”

ACM Trans. Embedded Comput. Syst., vol. 20, no. 5,

pp. 48:1–48:26, Jul. 2021.

Anish Krishnakumar is a staff engineer at
Arm, Austin, TX 78735 USA. His research interests
include machine-learning-based task scheduling
and power modeling of heterogeneous domain-spe-
cific SoCs (DSSoCs). Krishnakumar has a PhD from
the University of Wisconsin-Madison, Madison,
WI, USA.

Hanguang Yu is an assistant research professor
at Arizona State University (ASU), Tempe, AZ 85281
USA. His research interests include communications
and high-precision positioning systems. Yu has an
MSEE and a PhD from ASU.

Tutu Ajayi is a research fellow at the University
of Michigan, Ann Arbor, MI 48109 USA. His research
interests include primarily in cross-layer computer
architecture, with an emphasis on realizing research
into ASIC and FPGA platforms. Ajayi has a PhD in
electrical and computer engineering from the Univer-
sity of Michigan.

A. Alper Goksoy is pursuing a PhD in elec-
trical and computer engineering at the University
of Wisconsin-Madison, Madison, WI 53706 USA.
His research interests include task scheduling for

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 01,2024 at 21:44:01 UTC from IEEE Xplore. Restrictions apply.

80 IEEE Design&Test

General Interest

 Direct questions and comments about this article
to Anish Krishnakumar, Department of Electrical and
Computer Engineering, University of Wisconsin-Mad-
ison, Madison, WI 53706 USA; anish.n.krishnaku-
mar@wisc.edu.

domain-specific SoCs (DSSoCs), in-memory com-
puting, and on-chip learning. Goksoy has a BS in
electrical and electronics engineering from Bogazici
University, Istanbul, Turkey.

Vishrut Pandey is working as a senior engineer
at Qualcomm, San Diego, CA 92121 USA. Pandey
has a masters in electrical and computer engineering
from the University of Wisconsin-Madison, Madison,
WI, USA.

Joshua Mack is pursuing a PhD in the Electrical
and Computer Engineering Program at the Univer-
sity of Arizona, Tucson, AZ 85721 USA. His research
interests include reconfigurable systems, emerging
architectures, and intelligent workload partitioning
across heterogeneous systems.

Sahil Hassan is pursuing a PhD in the Electrical
and Computer Engineering Program at the Univer-
sity of Arizona, Tucson, AZ 85721 USA. His research
interests involve the design of reconfigurable and
heterogeneous computing systems and neuromor-
phic architectures. Hassan has an MSc in electrical
and electronic engineering from the University of
Dhaka, Dhaka, Bangladesh.

Kuan-Yu Chen is pursuing a PhD at the Univer-
sity of Michigan, Ann Arbor, MI 48109 USA. His cur-
rent research interests include digital circuit design,
accelerators, and computer architecture. Chen has
an MS in electrical and computer engineering from
the University of Michigan. He is a Student Member
of IEEE.

Chaitali Chakrabarti is a professor in the
School of ECEE, at Arizona State University (ASU),
Tempe, AZ 85281 USA. Her research interests
include VLSI algorithm-architecture codesign of sig-
nal processing and communication systems and all
aspects of low-power embedded systems. Chakra-
barti has a PhD from the University of Maryland, Col-
lege Park, MD, USA. She is a Fellow of IEEE.

Daniel W. Bliss is a professor in the School of
Electrical, Computer, and Energy Engineering, at Ari-
zona State University (ASU), Tempe, AZ 85281 USA.
He is also the director of ASU’s Center for Wireless
Information Systems and Computational Architec-
tures, Tempe. Bliss has a PhD an MS in physics from
the University of California at San Diego, La Jolla,
CA, USA.

Ali Akoglu is a professor in the Department of
Electrical and Computer Engineering, at the Univer-
sity of Arizona, Tucson, AZ 85721 USA. His research
focuses on high-performance computing and nontra-
ditional computing architectures. Akoglu has a PhD
in computer science from Arizona State University,
Tempe, AZ, USA.

Hun-Seok Kim is an associate professor at the
University of Michigan, Ann Arbor, MI 48109 USA.
His research focuses on system analysis, novel algo-
rithms, and efficient VLSI architectures for low-power/
high-performance wireless communication, signal
processing, computer vision, and machine-learn-
ing systems. Kim has a PhD in electrical engineer-
ing from the University of California at Los Angeles
(UCLA), Los Angeles, CA, USA. He is a Senior Mem-
ber of IEEE.

Ronald G. Dreslinski is an assistant pro-
fessor in the Computer Science and Engineering
Department, at the University of Michigan, Ann
Arbor, MI 48109 USA. His research interests include
near-threshold computing (NTC), architectural simu-
lator development, and high-radix on-chip intercon-
nects. Dreslinski has a PhD in computer science and
engineering from the University of Michigan.

David Blaauw has been on the Faculty of the
University of Michigan, Ann Arbor, MI 48109 USA,
where he is the Kensall D. Wise Collegiate Profes-
sor of EECS. He is the director of the Michigan Inte-
grated Circuits Lab, Ann Arbor. Blaauw has a PhD
in computer science from the University of Illinois at
Urbana–Champaign, Champaign, IL, USA.

Umit Y. Ogras is an associate professor at the
University of Wisconsin-Madison, Madison, WI 53706
USA. His research interests include embedded sys-
tems, heterogeneous SoCs, low-power VLSI, weara-
ble computing, and flexible hybrid electronics. Ogras
has a PhD in electrical and computer engineering
from Carnegie Mellon University, Pittsburgh, PA,
USA. He is a Senior Member of IEEE.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 01,2024 at 21:44:01 UTC from IEEE Xplore. Restrictions apply.

