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 With the sloWdoWn of Moore’s law, the abil-
ity of traditional homogeneous processors and single 
instruction set architecture (ISA) heterogeneous mul-
ticore architectures to satisfy the power and perfor-
mance requirements has saturated [1]. Graphics pro-
cessing units (GPUs), digital signal processors (DSPs), 
and hardware accelerators significantly improve the 
efficiency metrics at the cost of user programmability. 
Domain-specific SoC (DSSoC) architectures, which 
are a specific realization of heterogeneous architec-
tures, bridge the gap between programmability and 
energy efficiency by smartly combining general-pur-
pose, special-purpose, and hardware accelerator 
cores. The special-purpose and hardware accelerator 
cores strive to maximize the energy efficiency of appli-
cations in a targeted domain and the general-purpose 
processors provide programming flexibility [2].

SoC architectures, particularly DSSoCs, face 
monumental design and verification efforts due to 
rapidly increasing design sizes and complexities 
[3]. Fabricating a fully functional DSSoC design 
from scratch requires significant time, effort, and 
resources. Functional and performance bugs in 
these complex chips postfabrication result in 
unprecedented costs. Therefore, stringent presili-
con verification techniques such as RTL simulation, 
gate-level simulation, formal verification, FPGA 
emulation, and prototyping frameworks are used 
to detect bugs in the early design stages. Further-
more, making even incremental design changes, 
such as adding a new accelerator, requires new 
spinoffs with similar costs. FPGA emulation is spe-
cifically used to address these challenges and offers 
the following advantages [4]: 1) enables execution 
of real-world workloads on the full system (signifi-
cantly faster than simulation); 2) allows early firm-
ware and software development; and 3) facilitates 
faster time-to-market. While FPGAs have been used 
in NoC and special-purpose architecture prototyp-
ing [5], [6], [7], [8], end-to-end frameworks do not 
exist for the emulation and prototyping DSSoCs on 
a Linux-based operating system (OS).

This article proposes 
FALCON, an end-to-end 
FPGA-based emulation 
framework, to prototype 
DSSoCs for rapid design, 
presilicon functional 
validation, and perfor-
mance evaluation. FAL-

CON provides an accelerator sandbox, which uses 
standard advanced microcontroller bus architecture 
(AMBA)-based interfaces to the rest of the SoC. The 
accelerator sandbox improves developers’ produc-
tivity by providing a plug-and-play environment to 
include, remove, and modify hardware accelerators. 
FALCON also allows designers to develop drivers for 
nonstandard ISA designs, software, and firmware 
before the chip is available. It also enables what-if 
analysis with different hardware configurations and 
domain applications can be done much faster (in 
our experience in a few weeks) than waiting for the 
final chip. Finally, FALCON interfaces with compil-
er-integrated extensible DSSoC runtime (CEDR) [2], 
a software runtime framework, to allow applications 
to be seamlessly executed in a DSSoC.

FALCON architecture
This section describes FALCON’s full-system archi-

tecture for DSSoC design and emulation, as outlined 
in Figure 1. FALCON is composed of the hardware 
platform and the software stack. While these com-
ponents are typical in any SoC, DSSoCs are highly 
customized to maximize the energy efficiency of 
domain applications. The hardware platform inte-
grates general-purpose cores that offer program-
mability, hardware accelerators, and specialized 
processors for energy efficiency, a high-speed inter-
connect for low-latency on-chip data movement, 
last-level cache (LLC), peripherals, and debug logic. 
After synthesis and automatic place-and-route, the 
entire hardware architecture is packaged into a bit-
stream to program the programmable logic (PL) on 
the FPGA. The software stack comprises the Linux OS 
kernel, file system, and embedded system software 
components such as the boot firmware and U-boot. 
All components in the software stack are integrated 
into a software image, which is programed into the 
FPGA flash memory. Then, applications run on the 
underlying hardware of the DSSoC with the use of 
software runtime environments, such as CEDR and 
SPARTA [2], [9].

Editor’s notes:
This article presents FALCON, a full-system domain-specific system-on-
chip emulation platform that enables presilicon power and performance 
estimation of these platforms to provide support for early functional 
validation and software development.

—Sudeep Pasricha, Colorado State University, USA
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Hardware architecture
The FALCON hardware architecture is con-

structed using three major components: 1) base sys-
tem; 2) accelerator sandbox; and 3) miscellaneous 
hardware, controllers, and peripherals in the FPGA. 
The framework organizes the energy-efficient pro-
cessors into the accelerator sandbox and the gener-
al-purpose processors with the on-chip system-level 
interconnect into the base system. In addition to 
the base system and the sandbox, FALCON includes 
peripherals, controllers, and other hardware, as 
shown in Figure 1.

Base system
The base system forms the general-purpose 

subsystem of the DSSoC. FALCON utilizes Arm’s 
Corstone700 as the base system. Corstone-700 is a 
flexible and configurable subsystem that houses 
the 32-bit Arm Cortex-A32 cores as the processing 
cluster. It also provides easy and flexible interfaces 
to integrate other system components and peripher-
als. The number of Cortex-A32 cores is configurable 
between 1 and 4. An advanced extensible inter-
face (AXI)-based interrupt controller distributes the 
interrupts to the different on-chip components. The 
secure enclave and CoreSight unit provides security 

and debug services. CoreSight facilitates functional 
and performance debugging. We note that the ratios 
of all clock frequencies are maintained to maintain 
accuracy with the final tape-out. The flexibility of the 
architecture allows the base subsystem to be easily 
swapped with other Corstone subsystems or poten-
tially with different types of host systems.

Accelerator sandbox
The design and integration of components in a 

DSSoC are highly complex due to the large number 
and diverse processing elements. Therefore, the 
exploration phase involves frequent addition, modi-
fication, and removal of accelerators in a DSSoC. To 
address this concern, FALCON employs a modular-
ized implementation of the interfacing of hardware 
accelerators with the base system. The accelerator 
sandbox is an independent module that uses stand-
ard AXI interfaces to connect to the system-level 
interconnect. The sandbox approach allows the 
rest of the system to observe only the AXI interfaces 
from the sandbox. It is oblivious to its internal archi-
tecture, providing a plug-and-play mechanism for 
integrating hardware accelerators. This architecture 
assumes that each accelerator can master the mem-
ory bus or work closely with other accelerators or 

Figure 1. Overview of the key components and organization of the FALCON framework for DSSoC 
emulation on FPGAs. The hardware architecture and design (shown on the left) is programed as 
a bitstream onto the programmable fabric. The software image (shown on the right) is programed 
to the onboard flash memory. The accelerator sandbox includes a flexible SAP that efficiently 
implements operations such as FFT, matrix multiplication, and complex vector addition, 
subtraction, multiplication, and division.
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direct memory access (DMA) engines to transfer 
data to the system. The sandbox provides interrupt 
lines to the accelerators to indicate control transfer 
to the base subsystem. The sandbox uses four AXI 
initiator-responder channels. Designers map the 
chosen number of channels among the different 
hardware accelerators and their data streams based 
on the latency, bandwidth, and throughput require-
ments. A DSSoC that targets wireless communication 
and radar applications may integrate accelerators 
for fast Fourier transform (FFT), matrix multiplica-
tion, and a systolic array processor (SAP) to accel-
erate frequently encountered tasks as illustrated in 
Figure 1. The flexibility of the SAP enables us to exe-
cute several functionalities in the domain of interest 
with customized programming interfaces. The plug-
and-play mechanism allows designers to provide 
intrasandbox communication between accelerators 
to improve data movement latencies. The sandbox 
can easily be extended to support multiple clocks 
and resets if the accelerators are required to operate 
at different frequencies.

On-chip system interconnect
With the diverse processing elements on the 

chip, data movement is critical to ensure that the 
hardware has the necessary inputs to perform the 
required computation. Developers may choose to 
integrate low-latency mesh NoC interconnects (such 
as Arm CMN-600) or low-power crossbar-based inter-
connects (such as Arm NIC-400).

While the base system and system-level intercon-
nect use Arm-based components, FALCON is not 
limited to Arm-based systems, and developers are 
free to integrate processing elements and intercon-
nects of their choice. We note that the software stack 
(described in the upcoming subsection) would 
need appropriate updates to support the hardware 
choices.

Software stack
DSSoCs demand an extensive software stack to 

exploit the full potential of the hardware architecture 
and provide comprehensive programming support 
to end-users and developers. FALCON is based on 
the Arm Corstone-700 base system. Hence, it utilizes 
the Arm reference platforms to produce the software 
stack [10]. The Arm reference platforms are based 
on the Yocto project to build customized Linux dis-
tributions. While this section describes configuring 

the Arm reference platforms for FALCON, the meth-
odology is generic since the Yocto project is widely 
used to produce Linux distributions and software 
stacks. We emphasize that this software stack is fully 
deployable with standard security, virtualization, 
and the guarantees of a full-fledged Linux-based 
embedded system. This section focuses more on the 
specific configurations for the DSSoC configuration 
prototyped in this work.

The software stack integrates the following com-
ponents to produce the entire software stack (as 
shown in Figure 1): 1) Linux kernel; 2) boot firm-
ware; 3) trusted firmware; 4) U-boot; 5) root filesys-
tem; and 6) application packages. The interactions 
between these components are captured in Figure 2.

Linux kernel
The primary responsibilities of the kernel include: 

1) memory management; 2) process management; 3) 
device drivers; and 4) system calls and security. To 
support the hardware described in the previous sub-
section, FALCON makes the following modifications 
to the base configuration [10] for the Linux kernel.

• Enable multicore support through symmetric 
multiprocessing feature.

• Configure input–output memory management 
unit (IOMMU) for multiple cores.

• Enable kernel debugging capabilities.
• Configure power state coordination interface 

(PSCI) for multiple cores.
• Modify address pointers and image size of the 

software stack image stored in the flash memory.

Boot firmware
The boot firmware is the software for the secure 

enclave in the hardware architecture [10]. From the 
user perspective, the components that should be 
modified are firewall access, system-wide memory 
map definitions, and interconnect initialization. The 
firewall determines the accessible/restricted memory 
regions of: 1) the root file system; 2) the Linux kernel; 
and 3) the main memory. The boot firmware is com-
piled into a binary that is then built into the secure 
enclave hardware. Embedding the boot firmware into 
the hardware has a major implication in the DSSoC 
validation process, and this is precisely where early 
software development supported by FALCON plays 
a crucial role in developing bug-free and fully-func-
tional SoCs (described in the upcoming section).
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U-Boot
This software comprises a first-stage boot loader 

(FSBL) and a second-stage boot loader (U-boot). It 
is the primary component that handles hardware 
initialization and control hand-off to the OS for the 
booting process. FALCON modifies the Linux kernel 
address based on its size in the software image and 
the device tree address in U-Boot.

Trusted firmware
The trusted firmware in FALCON comprises the 

critical security software for Arm-based processor 
systems. The default Corstone-700 stack boots only 
one Arm core. One of the most critical components is 
the PSCI which is the interface for managing the idle 
cores, booting the secondary cores, and system shut-
down/reset. FALCON modifies the PSCI firmware to 
power on the secondary cores and enables realtime 
access to multiple cores. FALCON also adds helper 
threads with assembly code to initialize and boot the 
secondary cores. The secondary core information is 
also specified in the device trees as entries in 1) the 
PSCI interfaces and 2) central processing unit (CPU) 
cores. The device tree binary is built as part of the 
trusted firmware in FALCON’s software stack.

Root filesystem
The OS’s root filesystem (rootFS) contains the 

files and directories critical to the system’s opera-
tion. By default, the Corstone-700 reference software 

stack provides a read-only file system. This require-
ment forces all the critical packages and features to 
be built into the rootFS during the build process. The 
packages to be integrated into the rootFS determine 
its size. It is also critical to reduce the rootFS size to 
minimize the boot time.

User application packages
The user applications range from libraries that 

include application programming interfaces (APIs) 
to exercise the hardware accelerators to workloads, 
benchmarks, profilers, and performance monitors. 
The domain workload and benchmark source codes 
are cross-compiled for the specific Arm architecture 
(32-bit Arm v8 architecture in FALCON) and pack-
aged into the software stack. Additionally, perfor-
mance-monitoring tools, such as perf that uses the 
performance-monitoring unit (PMU) to monitor the 
CPU pipelines and the interconnect, can be inte-
grated to enable runtime performance monitoring 
and evaluation. The FALCON emulation framework 
utilizes the CEDR runtime framework, which is also 
deployed as a user application package.

Software runtimes
In this study for our experimental evaluations, we 

utilize the CEDR [2] ecosystem to conduct a design 
space exploration over the heterogeneous architec-
ture emulated on the FPGA. This system allows end 
users to compile their applications for execution on 

Figure 2. Timeline of the hardware development process and the boot sequence in software for a 
DSSoC emulated by the proposed FALCON framework.
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a heterogeneous architecture and then interact with 
hardware by launching a workload composed of any 
number and combination of different applications 
with user-specified arrival rates. We choose CEDR over 
other runtime frameworks [11], [12] since it enables 
the compilation and development of user applications 
for heterogeneous SoCs, evaluating the performance 
of presilicon heterogeneous hardware configurations 
based on dynamically arriving workload scenarios 
through distinct plug-and-play integration points in a 
unified workflow. Furthermore, CEDR offers a rich set 
of integrated scheduling policies, allows integration 
of new policies through its distinct plug-and-play inter-
faces, offers collecting performance counter-based 
performance evaluation through “perf” utility, and, 
more importantly, enables conducting design space 
exploration in the trade space of hardware compo-
sition, workload complexity, and scheduling policy 
over the user-defined performance metrics.

Enabling software and driver 
development

The efforts involved in software design and driver 
development for DSSoCs are substantially higher 
due to the presence of hardware accelerators and 
specialized cores. Software development after fabri-
cation significantly delays the time-to-market. To this 
end, presilicon FPGA-based emulation frameworks 
serve as a platform for software development and 
hardware–software codesign cycle.

Accelerator drivers
While general-purpose cores have a well-estab-

lished programming methodology in terms of pro-
gramming languages and compilation toolchains, the 
hardware accelerator interfaces are mainly ad-hoc. 
They may not follow predefined protocols and lan-
guages. The interface to a hardware accelerator 
involves the following aspects: 1) a configuration 
interface that allows the user to configure the acceler-
ator based on the application parameters; 2) a control 
interface that manages its initialization, starting, and 
completion; and 3) data interface for the inputs and 
outputs. It is critical to validate these interfaces and 
data transfer protocols in the design stage. Another 
aspect involves determining the optimal burst size for 
input and output data transfers and the memory hier-
archy. Current approaches in the literature include 
analytical and performance models to estimate 
these effects, but the modeling accuracy limits them. 

Moreover, they are often evaluated with only por-
tions of the system. FALCON enables evaluation in a 
full-system real-platform-like environment, providing 
highly accurate performance estimates. The precise 
evaluation allows designers to redesign the hardware 
and software architecture and interfaces as neces-
sary to maximize metrics, including performance, 
throughput, bandwidth, and energy efficiency.

Enabling performance-monitoring unit
The PMU records architectural and microar-

chitectural events and provides key performance 
indicators (KPIs). KPIs allow users to profile the 
applications and fine-tune the system parameters 
and architecture to maximize performance. Ena-
bling the PMU in FALCON requires several changes 
to the software stack. First, the following features are 
enabled in the Linux kernel: 1) CONFIG_PROFILING; 
2) CONFIG_PERF_EVENTS; 3) CONFIG_ARM_PMU; 
and 4) CONFIG_HW_PERF_EVENTS.

The size of the Linux kernel in the software image 
increases when the PMU is enabled. This increase 
changes the address offsets and the size parameters 
in the boot firmware and the U-boot, as described 
in the previous subsection. While the above mod-
ifications described are in the software stack, they 
strongly affect the hardware design. As described in 
the previous subsection, the boot firmware includes 
addresses and sizes of the Linux kernel, rootFS, and 
the main memory, which are used in the secure 
enclave firewall. This information is packaged into 
the hardware design, making it infeasible to update 
these parameters after the fabrication. To this end, 
FALCON enables all these hardware–software code-
sign aspects to ensure that the fabricated chip sup-
ports all intended features and functionality.

Demonstrations Using FALCON
FALCON aids chip developers in performing 

functional design validation, identifying the optimal 
data flow for hardware accelerators, analyzing per-
formance bottlenecks using hardware performance 
counters, and even performing early presilicon power 
evaluations. This article demonstrates the capabilities 
of FALCON for wireless communication and radar/
signal-processing application domain. The appli-
cations in these domains frequently exercise FFT, 
matrix multiplication and vector addition, subtrac-
tion, multiplication, and division operations, which 
are extensively evaluated in this section. FALCON 
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is evaluated using three Xilinx FPGA devices: Zynq 

UltraScale+ ZCU102, Virtex UltraScale+ VCU128, and 

Virtex UltraScale+ VU19P. Only the accelerator sand-

box is deployed on the ZCU102 since it includes preb-

uilt Arm Cortex-A53 cores (Zynq base system). We 

leverage the CEDR runtime environment to launch 

and run the target applications.

Enabling software development and functional 
validation

We developed software drivers for the hardware 

accelerators in the sandbox, which send and receive 

data from the system using DMA units. We generate 
random stimuli as inputs to the hardware accelera-
tors. The outputs of the accelerators are compared 
with a reference software implementation for func-
tional validation and precision evaluation.

For the FFT accelerator, we evaluated trans-
form sizes from 32 to 2,048 (in multiples of 2) 
as shown in Figure 3. The number of precision 
mismatches remains at fewer than three per-kilo 
computations. A larger transform size experiences 
higher mismatches due to a higher number of 
floating-point multiplication and accumulation 
operations. The fixed-size complex matrix multi-
plication accelerator experiences an average of 
one precision mismatch per-kilo computations. 
On average, more than 99.9% of the values in the 
computations match the software implementation 
within a 0.1% difference.

The SAP accelerator is implemented with 16-bit 
fixed-point precision to tradeoff accuracy for perfor-
mance and power consumption. The goal behind 
this idea is to use high-precision fixed-function 
accelerators for precision-demanding applications 
such as wireless communications and flexible ener-
gy-efficient accelerators for radar system applica-
tions. Figure 4 presents the accuracy (in percent) 
and mismatches per-kilo computations for various 
operations in the SAP. Except for vector division, 
other operations achieve a minimum of 93% accu-
racy compared to the respective software implemen-
tations. Since division is a highly complex operation, 
it suffers from larger accuracy differences because of 
the fixed-point implementation (especially for larger 
sizes). We note that these results well align with the 
requirements of radar applications.

FALCON specifically allows all these explora-
tions before fabrication to evaluate functionality, 
precision, and accuracy for different applications 
in the domain. In summary, the framework enables 
software driver development, functional validation 
of the drivers, and accelerators when exercised 
with the full system and evaluation of the precision 
requirements.

Optimizing DSSoC configuration for domain 
applications

Hardware accelerators introduce the notori-
ous double-copy problem where the data must be 
explicitly transferred from/to them using DMA units. 
While fetching the data from the main memory 

Figure 3. Number of precision mismatches (primary 
axis) per-kilo computations and the percentage of 
precise values (secondary axis) of the FFT and matrix 
multiplication hardware accelerators with respect to 
a reference software implementation in VCU128.

Figure 4. Number of precision mismatches (primary 
axis) per-kilo computations and the percentage 
of precise values (secondary axis) of the SAP 
accelerator (16-bit fixed point implementation) for 
vector addition, subtraction, multiplication, and 
division (for two sizes: 256 and 1024), FFT (512-point), 
and matrix multiplication operations with respect to 
reference software implementations in VCU128.
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capability allows developers to obtain early esti-
mates and observe power consumption trends for 
preliminary analysis before the chip is taped out.

FPGA implementation strategy
Although FALCON shares a similar design as 

the actual chip, there are a few critical aspects 
that must be addressed. First, a failure to generate 
the intended gated clocks in the design causes the 
tool to use cascaded clocks instead of generating a 
clock tree on the FPGA. This failure can also cause 
long placement and routing runtimes. While the tool 
must automatically generate gated clocks, develop-
ers must carefully check the gated clock conversion 
reports after synthesis and manually specify the 
clock relationships as required. Second, the design 
may instantiate memory modules from a specific 
process technology library. We should replace the 
memory instantiations with the FPGA memory primi-
tive or a generic memory model. Third, the synthesis, 

involves significant latency overheads, the on-chip 
scratchpad memory (SPM) has limited capacity. 
Figure 5 presents the latency (in thousands of equiv-
alent CPU clock cycles) for 128-, 256-, and 512-point 
FFT operations and complex matrix multiplication 
computation. The latency improves substantially 
with the use of SPM for larger computations (larger 
transform sizes). Larger computations require more 
memory and experience significant conflicts in the 
cache. Therefore, they experience better speedup 
when data are transferred using the on-chip scratch-
pad. Through such analyses, FALCON allows us to 
optimize the number of processors, cache sizes, 
and memory hierarchies for the processing ele-
ments for specific domain applications to maxi-
mize energy efficiency.

Illustration of hardware performance counters
Table 1 presents the hardware counters 

(described in the previous subsection) for two imple-
mentations of a matrix multiplication operation. The 
two implementations use different loop ordering to 
improve data locality in the caches, reflecting fewer 
cache misses, and, consequently, fewer computa-
tion cycles and wall time (Table 1). The ability to uti-
lize performance counters in FALCON enables users 
and developers to systematically analyze the effects 
of code optimization and their impact in terms of 
microarchitectural events.

Enabling presilicon power evaluations
Figure 6 presents the power consumption in the 

processing system (PS) and programmable logic 
(PL) in a ZCU102 FPGA using four Arm Cortex-A53 
cores at 1.2 GHz, one FFT, and one complex matrix 
multiplication accelerator operating at 100 MHz. 
The power consumption is captured using TI INA226 
power monitors on the board. We run 100 jobs each 
of pulse Doppler and temporal mitigation compiled 
for heterogeneous execution and managed using 
CEDR [2]. Figure 6 presents the idle and active PS 
and PL power for 100 s. At time 0, the PS consumes 
1.6 W, while PL consumes 1.322 W when the system 
is idle. The PS power increases to 2.2 W when the 
applications start execution. The change in PL power 
remains insignificant because of its lower operating 
frequency and high static/idle power in the FPGA 
logic. The PS power reduces at 52 s when pulse Dop-
pler completes and reduces to idle power of 1.6 W 
at 58 s when the temporal mitigation also ends. This 

Figure 5. Comparison of the hardware accelerator 
latencies (in thousands of cycles) when data are 
transferred through DDR memory (with and without 
coherency) and the on-chip SPM in VCU128.

 
Table 1. Comparison of hardware performance counter values 
between two different software implementations of matrix 
multiplication in VCU128 operating at a frequency of 32 MHz.
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placement, and routing strategy should be tuned to 
the specific FPGA and the size of the SoC. We use the 
AlternateRoutability for the accelerator sandbox syn-
thesis and the SpreadLogic at the top level. Finally, 
we achieve timing closure at 32-MHz main clock fre-
quency on the VCU128 and VU19P FPGAs.

Related work
Emulation frameworks play a crucial role in 

enabling presilicon functional validation, software, 
driver, and firmware development and are broadly 
classified into two categories. Virtual emulators, 
such as quick emulator (QEMU) and fast models, 
use abstracted functional models to design drivers, 
software, and firmware. FPGA-based platforms, rep-
resenting the other class of emulators, are widely 
used for NoC and reconfigurable architecture proto-
typing [6], [8]. However, their realization of full-sys-
tem emulation is limited. The cyber-physical SoC in 
[7] and an RISC-V accelerator-based system in [4] 
emulated on FPGAs are promising examples of full 
systems emulated on FPGAs. The framework in [7] 
does not support realtime power monitoring and 
a full-fledged Linux OS which is critical to enable 
full parallelism in the software runtime. The HERO 
framework [4] programs RISC-V-based accelerators 

in the FPGA but utilize prebuilt Arm cores in the 
FPGA and relies on the OpenMP framework for 
accelerator programming. Fully custom hardware 
accelerators in DSSoCs demand extensive function 
and performance validation and support for driver 
development. To the best of our knowledge, FAL-
CON is the first emulation platform that supports a 
fully customized SoC designed from scratch with 
hardware accelerators evaluated on a customized 
Linux OS. FALCON performs end-to-end emulation 
of DSSoCs to support as-is tape out for fabrication, 
which is critical for full system and top-level func-
tional validation.

the groWing design and verification complexi-
ties in DSSoCs and the prohibitive cost of identifying 
postfabrication functional and performance bugs 
raise the need for sophisticated presilicon evalua-
tion frameworks. Furthermore, the stringent time-
to-market requirements demand the availability of 
firmware and software in conjunction with the OS 
as soon as possible after the chip becomes availa-
ble. This article presented FALCON, an end-to-end 
full-system FPGA-based emulation framework for 
DSSoCs that integrates general-purpose processors, 
hardware accelerators, memory hierarchies, and 
on-chip interconnects to address these challenges. 

Figure 6. Illustration of power consumption in the PS (Arm 
Cortex-A53 cores operating at 1.2 GHz) and programmable 
fabric (hardware accelerators operating at 100 MHz) in a Zynq 
UltraScale+ ZCU102 FPGA.
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FALCON is seamlessly integrated with a software 
runtime framework named CEDR to execute both 
domain and nondomain applications on the DSSoC 
efficiently. FALCON’s hardware architecture and 
software stack, coupled with a runtime environment, 
enable realistic application execution in a Linux-
based OS and allow full-system functional validation 
and early performance estimates. <
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