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ABSTRACT

With generational gains from transistor scaling, GPUs have been

able to accelerate traditional computation-intensive workloads. But

with the obsolescence of Moore’s Law, single GPU systems are no

longer able to satisfy the computational and memory requirements

of emerging workloads. To remedy this, prior works have proposed

tightly-coupled multi-GPU systems. However, multi-GPU systems

are hampered from efficiently utilizing their compute resources due

to the Non-Uniform Memory Access (NUMA) bottleneck. In this

paper, we propose DualOpt, a lightweight hardware-only solu-

tion that reduces the remote memory access latency by delivering

optimizations catered to a workload’s locality profile. DualOpt

uses the spatio-temporal locality of remote memory accesses as

a metric to classify workloads as cache insensitive and cache-

friendly. Cache insensitive workloads exhibit low spatio-temporal

locality, while cache-friendly workloads have ample locality that

is not exploited well by the conventional cache subsystem of the

GPU. For cache insensitive workloads, DualOpt proposes a fine-

granularity transfer of remote data instead of the conventional

cache line transfer. These remote data are then coalesced so as to

efficiently utilize inter-GPU bandwidth. For cache-friendly work-

loads, DualOpt adds a remote-only cache that can exploit locality in

remote accesses. Finally, a decision engine automatically identifies

the class of workload and delivers the corresponding optimization,

which improves overall performance by 2.5× on a 4-GPU system,
with a small hardware overhead of 0.032%.
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1 INTRODUCTION

GPUs, with their high computational throughput, have been at

the forefront of accelerating data-parallel tasks. To date, GPUs

have satisfied the increasing computational demand from emerg-

ing workloads via transistor scaling. However, the slowdown of

Moore’s Law [8] has hindered the scaling of single-GPU perfor-

mance. In addition, there has been increasing computational and

storage demand from emerging workloads. As an alternative, major

GPU vendors have recently started offering tightly-coupled multi-

GPU systems [2, 30]. However, despite the availability of ample

compute resources, utilization of the full potential of multi-GPU

system still remains a challenge.

One of the key challenges of utilizing multi-GPU systems is the

Non-Uniform Memory Access (NUMA) bottleneck, which arises

from the large bandwidth gap between local and remote mem-

ory accesses. While local memory accesses enjoy the high band-

width memory (HBM), remote memory accesses are served via

pin-limited slow inter-GPU links. This results in up to a 12× dis-

crepancy between local and remote memory bandwidth [25, 42].

This discrepancy still holds in modern interconnect technologies

such as NVLink and NVSwitch [15, 29].

To address the NUMA bandwidth bottleneck, prior works have

followed two approaches: (1) page migration schemes [5], which

rely on runtime page partitioning, and (2) replication-based schemes

[26, 42], wherein remote data is duplicated in local memory of the

GPUs. While the former scheme achieves a balanced page distri-

bution, there still remains inter-GPU communication from shared

pages. On the other hand, the replication overhead in the latter op-

timization schemes can incur prohibitive storage costs. Therefore,

achieving high scalability in multi-GPU systems for workloads with

large working set sizes still remains a challenge.

To overcome the limitations of existing works, we propose Du-

alOpt, a low-cost hardware-only solution that reduces remotemem-

ory access latency via locality-dependent optimizations. The main

objectives of our design are to: (1) automatically identify locality

traits of a workload, and (2) deliver an optimization tailored to

the workload’s locality characteristics. We propose to classify dif-

ferent workloads based on their spatio-temporal locality property

into cache insensitive and cache-friendly. Cache insensitive

workloads have low spatio-temporal locality and benefit little from

caching, while cache-friendly ones exhibit better locality. Using
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this characterization, DualOpt introduces two novel optimizations:

remote access coalescing and remote data caching.

Remote access coalescing. We first make the key observation

that cache insensitive workloads have low cache line utilization.

Only a small fraction of remotely transferred cache lines are utilized

by the GPU Compute Units (CUs). Based on this observation, Du-

alOpt proposes to apply a finer granularity remote data transfers

to conserve the inter-GPU bandwidth. This technique is akin to

the sector cache employed in the IBM 360 in the 1960’s [24]. In

addition, DualOpt coalesces as much of these fine-grained accesses

as possible into a single interconnect packet.

Remote data caching. Second, we observe an under-utilized

opportunity to exploit data locality in remote accesses of cache-

friendly workloads. This under-utilization is due to: (1) high con-

tention of L1 caches in GPUs, shared by thousands of threads, (2)

sharing of the L1 cache by local and remote data, and (3) private

L1 cache design that leads to remote data replication for the same

cache lines accessed by different CUs. As a result, DualOpt aug-

ments a shared remote cache for storing remotely accessed data near

Remote Data Memory Access (RDMA).

DualOpt employs a decision engine to automatically deliver

locality-aware optimizations. A decision engine monitors, charac-

terizes, and identifies the class of a workload based on its spatio-

temporal locality. Once the category of a workload is identified,

the decision engine will declare an optimization and initiate the

required hardware components.

Contributions.We make the following key contributions:

• We perform a detailed characterization of multi-GPU work-

loads to divide them into cache insensitive and cache-

friendly workloads.

• We propose two novel optimizations: remote access coalescing

of fine-grained accesses and remote data caching for cache

insensitive and cache-friendly workloads, respectively.

• We design a decision engine to monitor, accurately identify,

and declare a workload-specific optimization.

• Finally, we evaluate the end-to-end performance of Du-

alOpt, showing a 4.4× reduction of inter-GPU traffic that
translates to an average memory access latency reduction of

2.4× and overall performance improvement of 2.5×.

2 BACKGROUND

2.1 Multi-GPU Programming

GPU programming frameworks such as OpenCL and CUDA pro-

vide programmers an interface to launch thousands of work items

on a GPU in a SPMD (single program, multiple data) fashion. A

group of work items form a wavefront that is executed in a lock-

step fashion. In turn, a group of wavefronts make up a workgroup,

that are launched to the same GPU. The recent advance of big data

applications has led to the exploration of multi-GPU platforms.

These frameworks are adding support for multi-GPU programming

with a discrete multi-GPU model. In OpenCL, a command queue

is associated with the available GPUs and all the kernel launches

(e.g., memory copy, kernel launch) run on the associated GPU. On

the other hand, CUDA has the cudaSetDevice API that gives the

programmer the option of which GPU to launch kernels on. There

has been an increasing interest to explore a unified multi-GPU

model by hiding multiple GPUs behind a single GPU interface,

thus, removing the programmer’s burden of modifying legacy code-

base and managing multiple GPUs. In this paper, we use a unified

multi-GPU model, which has been widely explored in related prior

works [4, 20, 25, 26, 36, 42, 46]. A GPU program is dispatched in

work groups (using OpenCL terminology) across GPUs transpar-

ently without specifying the GPU ID, and all GPUs share a unified

address space with implicit communication [36].

2.2 Multi-GPU Architecture

With the antiquation of Moore’s law, single-GPU systems can no

longer satisfy the increasing compute and storage demand of emerg-

ing workloads. One possible solution is a multi-GPU system, where

multiple GPUs orchestrate the execution of a workload in tandem.

Fig. 1 shows the interconnection of 2 AMD GPUs. These GPUs are

interconnected via high speed inter-GPU fabric such as PCIe. Re-

cent works have also shown package-level integration of multiple

GPUs [4]. However, the offered bandwidth of state-of-the-art inter-

connects still falls far behind the available local memory bandwidth.

In practice, local memory accesses enjoy up to 12×more bandwidth

compared to remote memory accesses. Therefore, optimizing the

remote access bottleneck can have significant positive impact on

the overall performance of multi-GPU systems [25, 42].

Each GPU shown in Fig. 1 is hierarchically divided into multiple

Shader Engines (SE), which have their own L1 scalar caches. Nu-

merous compute units (CU) reside within an SE co-located with an

L1 vector cache, (2) in the figure. A scalar cache is used to read a

single piece of data for a group of threads and is used for caching

read-only data such as constants. A vector cache stores individual

thread data. Accesses missed at the L1 cache have two options:

1) if the data is located at local memory, then a multi-banked L2

cache of the local GPU will serve requests, 2) if it is a remote access,

then either a specific cache line is retrieved from a remote memory,

or a page migration request is initiated to migrate a page to local

memory. Explanation of these communication mechanisms with

their trade-offs is detailed in the next section.

2.3 Multi-GPU Communication

Data partitioned across GPUs can be communicated in two ways:

Page Migration, and Direct Cache Access (DCA). Page migration

refers to the transfer of a page and ownership from one GPU to

another. Fig. 1 shows the sequence of steps taken to transfer a

page from GPU 1 to GPU 0. Initially, GPU 0 checks its transla-

tion look-aside buffers (TLB) to translate its address and upon a

TLB miss it translates via the Input Output Memory Management

Unit (IOMMU)( 1 ). The IOMMU is a central directory that tracks

page locations for all GPUs. After translation, if the IOMMU lo-

cates the page in another GPU (GPU1 in Fig. 1), it will initiate a

page fault. Upon detecting a page fault, a driver will flush the CU

pipeline, cache, TLB, and in-flight memory requests of the owner

GPU (GPU1) to avoid leaving stale translations and data ( 2 ). Then,

a Page Migration Controller (PMC) will transfer the page from GPU

1 to GPU 0 ( 3 ). Finally, future accesses to the same page can be

retrieved from the memory of GPU 0. Page migration transfers data

at coarse granularity and facilitates bandwidth optimized access.

On the other hand, page migration incurs performance penalty due
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Figure 1: Simplified multi-GPU system with 2 GPUs. Sequences of transactions for page migration and DCA are shown in red

and purple, respectively. SE 1 has the same components as SE 0, but omitted due to space limitations.

to flushing of outstanding memory accesses and contents in cache,

TLB, and CU pipeline. This is especially costly in GPUs, where

thousands of threads have in-flight requests and translations.

Page migration hurts performance when there is frequent shar-

ing of a page between GPUs resulting in a ping-pong effect. We can

avoid this penalty by relying on DCA. DCA allows accessing data

from remote memory at cache line granularity. Unlike page migra-

tion, it evades the costly flushing of CU pipeline, cache, and TLB.

Note that DCA still requires significant latency at the slow inter-

GPU interconnect for each remote accesses. This gets exacerbated

on a GPU, where a stall in a single thread accessing remote data can

delay the progress of an entire wavefront [9, 35]. Fig. 1 shows the

main steps in DCA. A requesting GPU (GPU 0) translates the ad-

dress with the help of the IOMMU ( 1 , 2 ). Then it directly sends its

request via the RDMA unit if it misses at the L1 cache ( 3 ). Finally,

a response arrives via RDMA and is cached at the L1 until eviction

( 4 ). DCA has been used in numerous prior works [5, 25, 42]. Thus,

this work uses a unified GPU based DCA [36] as a baseline and

focuses on how to further optimize it.

3 UNDERSTANDING THE INTER-GPU
COMMUNICATION BOTTLENECK ON
MULTI-GPU SYSTEMS

In this section, we analyze the inter-GPU communication behavior

and its impact on the overall performance of multi-GPU systems.

We also identify the source of bottlenecks and pinpoint mechanisms

to address the bottlenecks. We simulate the multi-GPU system on

MGPUSim [36] based on the configuration in Table 1. For most of

this paper, we model a multi-GPU system with 4 GPUs. To best

understand the inter-GPU communication bottleneck, we ask the

following key questions:

(Q1)What is the maximum attainable benefit of address-

ing the inter-GPU communication bottleneck?

(Q2)What is the distribution of accesses into local and

remote memory address space?

(Q3)Where do the remote memory accesses spend most

of their trip time?

(Q4)What is the cache line utilization of remote accesses?

(Q5) What is the coalescing opportunity in the remote

memory accesses?

We present a detailed performance analysis of multi-GPU work-

loads to answer these questions, as shown below.

3.1 Characterization of Workloads

Q1. The inter-GPU link is the main source of contention in multi-

GPU systems. To understand the maximum attainable benefit of

addressing the inter-GPU bottleneck, we implement a multi-GPU

system with different hypothetical interconnect frequencies. Fig. 2

shows the effect of increasing inter-GPU frequency on the perfor-

mance of a wide range of workloads (see Table 2). It shows the

opportunity for speedup achievable by addressing inter-GPU con-

gestion. Though impractical, increasing the baseline frequency by a
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Figure 2: Sensitivity of performance to inter-GPU frequency. Increasing the inter-GPU frequency improves remote-dominated

workloads while local-dominated works remain frequency-agnostic.
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Figure 3: Memory accesses to local and remote memory ad-

dress space. Remote accesses can be served from either local

L1 cache or remote GPU.

factor of 2, 4, 8, and 16 offers an average performance improvement

of 1.8×, 2.4×, 3.1×, 3.2× respectively. Note that the speedup gain
for frequencies above 8 GHz saturates for all workloads.

Two categories of workloads clearly emerge based on our find-

ings in Fig. 2. The first category ofworkloads are remote-dominated,

where increasing the inter-GPU bandwidth boosts the overall per-

formance. The second category are local-dominated workloads

such as aes and fir. Due to their data layout and algorithmic prop-
erty, data partitioned across GPUs are solely used by their host

GPU. Hence, these workloads are hardly impacted by inter-GPU

bandwidth. In contrast, accesses from remote-dominated workloads

are not confined to local address space, which incurs inter-GPU

traffic. Therefore, our analysis and optimizations afterwards focus

on remote-dominated workloads.

Q2. Fig. 3 shows a breakdown of memory accesses into local

and remote memory address spaces. Accesses to local memory

address space are always serviced by local memory units, while

remote memory accesses can either be retrieved from local L1 cache

(𝑅𝑒𝑚𝑜𝑡𝑒 − 𝐿1$) or remote memory (𝑅𝑒𝑚𝑜𝑡𝑒 − 𝑅𝑒𝑚𝑜𝑡𝑒). Remote-
dominated workloads have around 40% of memory requests served

from remote memory. These workloads heavily rely on the scarce

inter-GPU link bandwidth to request and transfer data from remote

GPU. We also notice that certain workloads such as bs and sc are
able to serve significant remote memory accesses from the L1 cache

incurring less inter-GPU transactions.

Q3. Here, we analyze the cycles spent within the inter-GPU

link relative to the end-to-end latency of remote memory accesses.

We break down the path taken by remote memory accesses into

three phases: pre inter-GPU link (within source GPU), within inter-

GPU link, and post inter-GPU link (at remote GPU). Fig. 4 plots a

AT
AX BF

S

BI
CG PR

Sp
M

V

KM M
M M
T ST BS SC

Workload

0
20
40
60
80

100

R
em

ot
e 

M
em

or
y 

 L
at

en
cy

 (
%

)

RDMA-DstGPU RDMA-RDMA SrcGPU-RDMA

Figure 4: Latency distribution of remote memory accesses.

The latency has three phases: pre inter-GPU link (within

source GPU), within inter-GPU link, and post inter-GPU link

(at remote GPU).
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Figure 5: Cache line utilization in remote memory accesses.

A 64 byte cache line is divided into 16 4-byte pieces. A CU

can consume upto 16 cache line pieces.

breakdown of a remote memory access latency. Overall, remote-

dominated workloads spend 80% of remote memory access latency

traversing the inter-GPU links. Exceptions to this trend are bs
and sc, where inter-GPU latency is low due to their relatively low
inter-GPU congestion. Note that, the high L1 cache hit rate of both

workloads (see Fig. 6) results in lower the inter-GPU traffic.

3.2 Sources of Inefficiency

Q4. As discussed in §2, DCA relies on the cache line transfer

of remote data. Here, we further dissect the effectiveness of the

cache line transfer of remote data employed in DCA techniques.

Conventionally, a 64 byte cache line is transferred per memory

transaction. We use cache line utilization to quantify how much

of a cache line is consumed by a CU (on average). Fig. 5 shows the

effective utilization of remote cache line data transferred via inter-

GPU links. The first class of workloads with low spatial locality
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Figure 6: Coalescing potential of remote memory request at

the RDMA and L1 cache hit rate of local and remote memory

accesses.

are cache insensitive. These workloads exhibit very low cache

line utilization; on average, 99% of accesses consume less than four

piece (16 byte) of the cache line. Hence, cache insensitive workloads

suffer from (1) inefficient data transfer where a sparsely utilized

cache line is transferred wasting inter-GPU bandwidth, and (2)

eviction of useful cache entries by these poorly utilized cache lines.

Q5. The second class of workloads are cache-friendly. As

shown in Fig. 5, these workloads exhibit a good cache line utiliza-

tion. However, their temporal locality is still low with an average L1

cache hit rate of 22% as shown in Fig. 6. This is because L1 caches

are (1) small but shared by thousands of threads leading to frequent

cache evictions, and (2) private to CUs where inter-CU locality is

left unexploited. For instance, to study the potential inter-CU local-

ity, we monitor outgoing memory requests leaving the GPU at the

RDMA. We augment an ideal (infinite-sized) coalescing buffer at

the RDMA to merge remote accesses to the same memory location.

Fig. 6 shows percentage of accesses that can ideally be coalesced

at the RDMA. One can observe that some workloads (i.e., mm, bs,
and sc) exhibit ample locality among remote memory requests.

4 DUALOPT DESIGN

In this section, we present DualOpt, a low-cost hardware-based

solution that introduces locality-aware optimizations to tackle the

inter-GPU link congestion. DualOpt, based on the spatio-temporal

characteristics of a workload (detailed in §3), proposes two inde-

pendent optimizations.

Remote Access Coalescing. Conventionally, remote data is
transferred and cached at a cache line granularity. However, as

discussed in §3.2, cache insensitive workloads struggle to enjoy the

benefit of cache line transfer due to their very low spatio-temporal

locality (see Fig. 5 and 6). Thus, we replace the conventional cache

line transfer of remote data with a fine-grained one. By transferring

only useful portion of cache lines at fine granularity, one can save on

the scarce inter-GPU bandwidth. This entails appending additional

metadata, during address generation, to identify specific locations of

fetched remote data. Due to the mismatch between the fine-grained

transfers and cache block sizes, DualOpt opts to bypass caches for

remote accesses. Note that caching is already ineffective for cache

insensitive workloads, as described in §3.2. On the positive side,

these fine-grained remote transactions offer coalescing opportunity

to further reduce inter-GPU network traffic.

Remote Data Caching. In §3, we observe that cache-friendly
workloads exhibit good cache line utilization, but are not effectively

served by current GPU caches. Hence, to exploit locality in these

workloads, we propose a local cache at the RDMA. The RDMA

Cache stores only remote data and acts as a victim cache for remote

accesses that miss the L1 caches. Conventionally, remote accesses

that miss L1 caches are served via the slow inter-GPU links. How-

ever, by serving remote memory accesses at the RDMA Cache, we
will avoid these long latency remote accesses.

Fig. 7 shows a high-level diagram of additional units introduced

by DualOpt. DualOpt has four basic units:

Bitmask Generation Unit (BGU): handles the generation of ad-

dresses. The generated addresses permit fine-grained accesses by

including a bitmask to identify fetched entries in a cache line.

Cache Extensions: identifies remote accesses in cache insensitive

workloads and bypasses them from using the L1 cache. Note that

these remote accesses are fine-grained. A slight extensions to miss

status handling registers (MSHR) is also required to track these

fine-grained remote memory accesses.

RDMA CoDec Unit: has two functions: 1) coalescing fine-grained

outgoing remote responses until it fits a packet size, and 2) de-

coalescing back an incoming packet (remote response) into individ-

ual responses so as to be processed by the receiving GPU.

RDMA Cache: a local in-RDMA cache that stores remotely ac-
cessed data for cache-friendly workloads.

The following sections explain these units in detail.

4.1 Remote Access Coalescing
4.1.1 Bitmask Generation Unit (BGU). The main purpose of

BGU is to generate fine-grained addresses. Conventionally, a mem-

ory address generated from a CU (coalescer) points to a cache line.

A coalescer is used to merge memory accesses from one or more

threads in a wavefront that access the same cache line. Fig. 7(b)

shows how a coalescer unit merges memory accesses from a wave-

front that has 4 threads. The coalescer merges accesses from thread

2 (0x100) and 3 (0x104), since both threads access the same cache
line. The other two can not be coalesced as they refer to different

cache lines. In total, the coalescer generates 3 memory accesses.

In DualOpt, we augment BGU to the coalescer. Whereas the

coalescer generates cache line addresses, the BGU appends an extra

bitmask entry. Fig. 7(b) shows how the bitmask is generated at the

coalescing unit. The bitmask has 16 bits, where each bit refers to

a 4-byte entry within a cache line; a cache line has a total of 16

4-byte entries. Hence, the BGU uses 4 bits of an address ([5:2]) to

calculate the bitmask in parallel with the coalescing unit. And, when

accesses from two or more threads are coalesced (e.g.0x100 and
0x104 in Fig. 7(b)), the BGU bitwise-OR’s their respective bitmasks
to generate the final bitmask. DualOpt appends the bitmask to

the cache line address and propagates it to the memory subsystem,

thereby allowing flexible fetching of data at a small granularity. A

bitmask has no traffic overhead since it is carried by a read request

that can repurpose its unused reserved bits.

4.1.2 Cache Extensions. DualOpt extends the cache subsystem

to take care of requests generated at the BGU. We extend two key

components of the L1 cache, namely cache controller and MSHR.
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Figure 7: High-level architecture of a multi-GPU system with two GPUs.

DualOpt extends the coalescing unit, cache subsystem, and RDMA (shown in green).

Figure 8: Simplified example ofMSHRoperations in a 2-entry

MSHR. Incoming request contains an 8-bit bitmask.

Selective Cache Bypassing Unit (SCBU). Since remote memory

requests operate at finer granularity, DualOpt bypasses the cache

for remote requests. To this end, DualOpt uses an SCBU to iden-

tify and bypass remote memory accesses at the cache controller.

Fig. 7 (c) shows an SCBU that contains an address registers holding

the start and end physical addresses of local GPU memory. After

a memory request arrives at an L1 cache, the SCBU consult the

address registers to decide bypassing. Note that SCBU operates in

the physical address space. If the requested address falls outside the

start and end address registers, then it is a remote memory request

and will bypass the L1 cache. Otherwise, it will follow conventional

cache access procedure.

MSHR Extensions.MSHRs are used for holding in-flight memory

requests. Conventionally, upon arrival of new memory request,

an MSHR is checked. If there exist entry to the same cache line

address, it means there is prior outgoing memory request to the

same address and MSHR hit occurs. Hence, the current memory

request is recorded and will use the memory response of the prior

request. On MSHR miss, a new MSHR entry is allocated and a

memory request is sent to the lower memory hierarchy.

In DualOpt, however, the flexibility in memory access granu-

larity prohibits the use of conventional MSHR structure. Hence,

DualOpt extends the MSHR to carefully handle the fine-grained

remote requests. Fig. 7 (c) shows the additional bitmask entry added

to the MSHR. The bitmask tracks specific cache line entries fetched

by outgoing memory requests. Hence, MSHR in DualOpt should

consider bitmasks in its operation. Fig. 8 shows a case-by-case

execution flow of MSHR queries in DualOpt.

A Same address, same mask: For an incoming memory request,

if there exist an MSHR entry that has the same address with a

bitmask containing1 the incoming bitmasks, then it will be anMSHR

hit. Fig. 8(a) shows an incoming request that has similar address

(0x100) as the MSHR entry. In addition, the bitmask of the incoming
request (0b01000000) is the subset of the corresponding bitmask
of the MSHR entry (0b01000000). In other words, the fine-grained
data being fetched by the in-flight request can serve the incoming

request. Hence, it will be an MSHR hit.

B Same address, differentmask: If anMSHR entry has the same

address but does not contain all bitmasks of an incoming memory

request, then it will be an MSHR miss. Fig. 8(b) shows an incoming

request with a bitmask of 0b00000010 (7th entry of a cache line).
Even though there exists an MSHR entry with the same address, it

is fetching the first entry of a cache line (0b10000000). Therefore,
it will be an MSHR miss. Additional MSHR entry is allocated and a

request is sent to lower memory hierarchy.

C Different address: If there exists no MSHR entry with the

same address as the incoming request, then it will be an MSHRmiss.

Fig. 8(c) shows an incoming memory request that has no matching

entry in the MSHR. Hence, the request is allocated its own MSHR

entry and will be forwarded to lower memory hierarchy.

1bits set in a bitmask of an incoming memory request are all set in a bit mask of an
MSHR entry, then the MSHR entry contains the bit mask of the incoming memory
request
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Figure 9: Comparison of RDMA operations with and without

CoDec. A packet header includes the message type, compres-

sion algorithm, response ID, and few reserved bits. Packet

sent to the same destination GPU carry similar header except

the response ID. DualOpt carries the response ID of each

coalesced access for identification at the receiver.

4.1.3 RDMA CoDec Unit. The RDMA unit acts as an interface

to the inter-GPU link through which incoming and outgoing mem-

ory transactions are transferred. In DualOpt, fine-grained remote

memory transactions are coalesced into a single packet to efficiently

use interconnect bandwidth. And on the receiving side, the RDMA

should be capable of de-coalescing the incoming packet. DualOpt

has a dedicated CoDec unit in RDMA that handles the coalescing

and de-coalescing of remote memory transactions. Note that we do

not apply fine-grained memory accesses at L2 cache and DRAM.

Our analysis shows that because of the high memory bandwidth

at the crossbars connecting L1 cache with L2 cache, there is no

performance headroom from fine-grained L2 cache accesses. Up

to 2% loss in performance is incurred after applying fine-grained

caching at L2 cache.

Fig. 7(e) shows the hardware structure of the CoDec unit. A

CoDec has two basic components, a coalescer and de-coalescer.

Coalescer coalesces fine-grained outgoing memory responses.

Since DualOpt transfers fine-grained data, it is possible to merge

them into one packet. A buffer is used for staging outgoing re-

sponses to the coalescer. Since a coalescer merges responses to

the same destination, DualOpt separately buffers responses to

different destination. Therefore, n-1 buffers should be allocated in

RDMA, where n is the number of GPUs. Fig. 7(e) is a two-GPU

system, hence outgoing responses are queued in a single buffer.

This simplifies the coalescer logic as it can merge and send packets

from each buffer in a round-robin fashion. To avoid deadlock, we

set a buffer timeout to flush the buffer during inactivity.

Fig. 9 shows how coalescer merges multiple outgoing responses

in comparison with conventional data transfer. Conventionally, an

individual response packet carries a 64-byte cache line from each re-

sponse in addition to packet header. In DualOpt, a response packet

can carry up to 10 fine-grained transactions per packet, where each

transaction is 6 bytes (4-byte data and 2-byte response ID). How-

ever, the packet might not be fully utilized to avoid performance

penalty from long waiting times at the CoDEC buffers.
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Figure 10: Cache line utilization and L1 cache hit rate during

the execution of the representative workloads.

Figure 11: Flow chart of a decision engine.

De-coalescer performs the reverse of the coalescer; de-coalescing

incoming packets at the RDMA. The de-coalescer receives an incom-

ing packet and breaks it up into multiple individual fine-grained

responses. It uses the compression algorithm field in the packet

header (see Fig. 9) to identify a coalesced response packet from

a regular ones. It also uses 3 bit of the header to determine the

number of responses it contains. Note that the header bits are not

fully utilized, hence can carry more info.

4.2 Remote Data Caching
DualOpt optimizes cache-friendlyworkloads by employingRDMA
Cache–a local cache dedicated for retaining remote data. Tradi-
tionally, remotely accessed data is locally cached in a small pri-

vate L1 cache. The L1 cache serves both local and remote requests

from thousands of threads in GPUs. As a result, locality in remote

accesses has not be exploited well due to the contention at L1

caches. DualOpt puts RDMA Cache prior to the RDMA to fil-
ter out outgoing remote memory requests as shown in Fig. 7(a).

The RDMA Cache exploits locality in remote memory accesses of
cache-friendly workloads to reduce transfer of data via slow remote

interconnect. Thus, avoiding costly remote memory accesses.

4.3 Decision Engine

As described above, DualOpt performs two-independent, locality-

driven optimizations. DualOpt proposes a decision engine to accu-

rately categorize the locality behavior of a workload and declare
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an optimization. First, the decision engine identifies if a workload

is local or remote-dominated. Then, it uses the spatio-temporal

locality (see §3.2) as a metric to further classify remote-dominated

workloads. A decision engine has two phases: monitoring and op-

timization phase. During a monitoring phase, it tracks memory

access requests arriving at the L1 cache within a small window of

execution. Specifically, the ratio of remote accesses, cache block uti-

lization of remote reads, and the L1 cache hit rate of remote accesses

are collected. As shown in Fig. 10, cache insensitive workloads have

low cache line utilization and hit rate, while cache friendly work-

loads have good cache line utilization or good hit rate or both.

These execution statistics of a workload, in combination with a pre-

defined thresholds (remote_thresh, block_thresh, and hit_thresh), are

fed to the decision engine to determine the category of a workload.

Fig. 11 shows the operation flow chart of a decision engine. Based

on the flow chart, remote access coalescing is declared if a workload

has a cache block utilization and hit rate below the block_thresh and

hit_thresh, respectively. Otherwise, remote data caching is declared.

Then the declared optimization is applied to a workload during the

optimization phase.

However, to widen the optimization phase, a decision engine

should be able to quickly complete the monitoring phase. This

entails accurately determining the class of a workload in as small

a window of execution time as possible. This is possible due to

the fairly consistent behavior of workloads throughout execution

(see Fig. 10). Fig. 12 shows the accuracy of the narrow-window

estimate of a decision engine as compared with a golden model.

One can observe that a decision engine is able to accurately classify

the workloads. Thus, a decision engine monitors, identifies and

declares an optimization at the beginning of execution. In order to

maintain good decision accuracy, each workload is monitored for as

small as 20K remote memory accesses. However, handling of time-

varying statistics such as multi-tenant workloads is outside the

scope of DualOpt. In the future, we plan to explore the adoption

of a reconfigurable decision engine, which has been studied well in

the context of reconfigurable hardware [14].

4.4 Implications on Memory Coherence

In DualOpt, we introduce anRDMA Cache to retain a local copy of
remotely accessed data for cache-friendly workloads. To maintain

software coherence, RDMA Cache invalidates its cache entries
and flushes any dirty data back to remote GPU memory on kernel

ends (synchronization points). On the other hand, cache insensitive

workloads immediately propagate all remote updates due to cache

bypassing. Hence, coherence is maintained as no local copy of

remote data exist. In a similar fashion, globally coherent instructions

such as atomics are handled the conventional way. The adoption of

DualOpt is also compatible with the current IO-coherent GPUs.

4.5 Handling other Inter-GPU Transactions

Any non-read remote transactions, including sys-scoped and non-

sys-scoped writes are not considered for coalescing in DualOpt.

Non-read remote transactions are handled the conventional way,

since they do not offer coalescing opportunity. Our design choice

ensures backward compatibility of DualOpt with a strong GPU

memory consistency model.
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Figure 12: 2D spatio-temporal locality of workloads (Deci-

sion Engine vs Golden Model). The Golden Model uses stats

collected from end-to-end execution of a workload. Cache

line utilization is normalized. Cache-insensitive workloads

are located in the lower left quadrant, and cache-friendly

workloads occupy in the remaining portion of the plot.

GPU Parameters

SEs 16
CUs per SE 4
CTA policy partition
L1$ (Vector) 1 per CU, 16KB 4-way
L1$ (Scalar) 1 per SE, 16KB 4-way
L2 Cache 2MB 16-way, writeback
MSHR 32 entries
Cache Line 64 bytes
DRAM 4GB HBM

Inter-GPU Fabric Parameters

BW 64 GB/s
Flit Size 16 Bytes

DualOpt Parameters

BGU 2-byte addr. extension
OR & divider logic

SCBU 2 addr. registers
comparator

MSHR 2-byte bit-mask per entry
bit-mask comp.

RDMA 3 64-entry buffer
buffer timeout = 30
comp. & adder

RDMA$ 1.5MB 16-way, writeback
L2 Cache 0.5MB 16-way, writeback
Decision remote_thresh = 2%
Engine block_thresh = 0.2

hit_thresh = 0.4

Table 1: Parameter specification of the modeled architecture.

5 EXPERIMENTAL METHODOLOGY

Modeled System.We use a cycle-accurate model of multi-GPU

system with 4 AMD GPUs [3]. DualOpt can also be implemented

on other architectures (e.g., NVIDIA GPUs). Table 1 shows the ar-

chitectural parameters of the system. The GPUs are interconnected

via PCIe-like interconnect (4th generation). Each GPU has 16 SEs.

Each SE has 4 CUs and a scalar L1 cache. Each CU has its own

private L1 vector caches, while the L2 cache is shared within GPU.

Simulation Infrastructure.We use MGPUSim [36] (version 2.0.1),

a multi-GPU simulator that accurately models AMD systems. The

additional hardware modules in DualOpt are accurately modeled

in MGPUSim. We use CACTI [28] to determine the timing and

power consumption of the additional MSHR entries. We design and

synthesize other DualOpt components (BGU, cache extensions,

and RDMA CoDec) using commercial 28nm CMOS technology.

Evaluated Workloads. We use a diverse set of workloads col-

lected from the widely used benchmarks such as AMDAPPSDK [1],

SHOC [12], Hetero-Mark [37], and Polybench [44].

Simulation Methodology.We run all workloads till completion.

We follow the same evaluation for all configurations. In bfs, we
select the vertex with maximum outgoing edge as the source vertex.
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Class Workload Description

Cache Insensitive

atax [44] matrix transpose and vector multiplication
bfs [12] breadth first search
bicg [44] biconjugate gradient stabilized
pr [37] page rank
spmv [12] sparse matrix vector multiplication

Cache-Friendly

km [37] kmeans clustering
mm [1] matrix multiplication
mt [1] matrix transpose
st [12] stencil 2D
bs [1] bitonic sort
sc [1] simple convolution

Local Dominated
aes [37] advanced encryption standard
fir [37] finite impulse response

Table 2: Workload characteristics evaluated in DualOpt.
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Figure 13: Performance comparison of DualOpt, Page Mi-

gration normalized to Baseline (DCA).

This enforces a wider graph traversal and a longer execution time.

Since working version of pr is available in CUDA, we convert and re-
implement it in OpenCL. Our decision engine starts operating after

a warm up period for good accuracy. Then, it collects statistics for

the first 20K remote memory accesses before declaring a decision.

This takes negligible time compared to the total execution time.

6 EVALUATION

In this section, we present the overall performance improvement of

DualOpt. We also show the inter-GPU traffic and memory access

latency impact of DualOpt. We also show its sensitivity to transfer

granularity, buffer timeout, CTA scheduling policy, interconnect

configurations, and number of GPUs.

6.1 Performance Analysis

Speedup.We report the performance improvement of DualOpt

normalized to Baseline (transfers inter-GPU data at cache line
granularity) in Fig. 13. Our baseline adopts runtime ofMGPUSIM [36]

to distribute data in a unified multi-GPU system. We also compare

with Page Migration, which is a unified memory based system
that initially distribute pages via page migration. Overall, DualOpt

improves performance by 2.5× on average. In cache insensitive
workloads, DualOpt transfers remotely accessed data at a finer

granularity, which are then coalesced for better interconnect uti-

lization. As described in §3.2, these workloads offer high coalescing

opportunities since the majority of remote reads utilize a fraction

( 116 th) of a cache line. Therefore, DualOpt utilizes this opportu-

nity and offers 3.6× speedup for cache insensitive workloads. We
also observe that workloads such as atax and bicg work well with
Page Migration than Baseline. This is due to serialization of
outgoing remote memory accesses in DCA because of cache stalls

induced by column-wise accesses common in atax and bicg.
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Figure 14: Inter-GPU traffic reduction of DualOpt normal-

ized to Baseline (DCA).
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Figure 15: Memory access latency improvement of DualOpt

normalized to 4-GPU baseline.

Cache-friendly workloads use RDMA Cache to serve remote
memory accesses at the RDMA. The benefits of RDMA Cache
stem from two reasons: 1) cache lines evicted from the small L1

caches can be retained at RDMA Cache, and 2) RDMA Cache
allows sharing of data among CUs in a GPU. For instance, mm
has much unexploited locality (shown in Fig. 6) that translates

to significant performance improvement (2.6×). The majority of
remote accesses in mm are to read-only data, while updates are
stored to local memory. Thus, RDMA Cache can retain and reuse
matrix tiles (within and across CUs), significantly cutting down

on global memory accesses. On the other hand, workloads such

as mt, where the majority of loads are to the local address space
and stores dominate remote accesses [36], show minimal perfor-

mance improvement. Overall, DualOpt improves the performance

of cache-friendly workloads by an average of 1.6×.
Inter-GPU Traffic.We further look into the impact of DualOpt

on the inter-GPU traffic traversing the slow remote links. As shown

in Fig. 14, DualOpt reduces inter-GPU traffic across data points

with noticeable improvements in 8 out of 11 workloads. Note that

the reduction in traffic depends on the transaction types (e.g. load,

stores) and shared page types (e.g. read-only, read-write) present in a

workload. Workloads such asmmwith significant traffic reductions
have the majority of their remote transactions to read-only data.

Memory Latency. Fig. 15 presents the memory latency of Du-

alOpt normalized to Baseline. We use the average latency of the
memory requests as a metric for memory latency. DualOpt re-

duces remote accesses traversing inter-GPU links. Because remote

accesses comprise the bulk of memory accesses and they are signif-

icantly slower than local accesses, DualOpt improves the overall

memory latency by 2.4× (average).
Performance Breakdown of Remote Access Coalescing: As
described in §4, Remote Access Coalescing has three steps: L1
cache bypass, fine-grained access, and coalescing. Here, we investi-

gate and quantify the contribution of each to the overall perfor-

mance in Fig. 16. We note that L1 cache bypass incurs minimal

performance loss in most workloads except atax and bicg. Bypass-
ing caches improves the performance of atax and bicg by 3.2×, on
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Figure 16: Performance improvements over the baseline of

cache insensitive workloads achieved by cache bypassing,

fine-grained access, and coalescing.
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Figure 17: RDMA Cache hit rate of DualOpt in comparison

with L2 cache hit rate of Baseline and DualOpt.

average. As described earlier, the column-wise accesses in these

workloads incur frequent cache set conflicts. However, the bypass-

ing of caches evades the cache stalls and allows more outstand-

ing memory requests. In the case of bfs, bypassing sacrifices the
33% of L1 cache hits (see Fig. 6), which translates to 25% perfor-

mance loss. Fine-grained access, on the other hand, consistently

improves upon L1 cache bypass across workloads by 1.7×, on aver-
age. These small-sized accesses can be carried by small packets, so

it lowers interconnect congestion. Finally, coalescing of fine-grained

accesses further boosts the overall performance by 1.2×. This is
due to the ample coalescing opportunity created by the outstand-

ing fine-grained accesses bypassed by the L1 cache. However, in

atax and bicg, coalescing shows no benefit as the buffering delay
outweighs its benefit.

RDMA Cache Effectiveness. To exploit locality of cache-friendly

workloads, DualOpt employs RDMA Cache to store remotely
accessed data at the RDMA (see §4.2). To maintain iso-area com-

parison, 34 of L2 cache is sliced off in DualOpt. Hence, DualOpt

reduces the latency of costly remote memory accesses at the ex-

pense of L2 cache hits. In order to quantify the efficacy of RDMA
Cache, we show the change in cache hit rates of RDMA Cache and
L2 cache. Fig. 17 shows that RDMA Cache saves on average 35%
of remote accesses from traversing the slow remote links. This is

achieved at the expense of the L2 cache hit rate that reduces from

21% to 13%. Generally, we observe a lower L2 cache hit rates in all

workloads except in sc. In sc, serving remote memory requests at
RDMA Cache can potentially relieve congestion at the remote L2
cache. As a result, local memory accesses are able to enjoy the L2

cache without contention from remote accesses.
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Figure 18: Performance of DualOpt with 4, 8, and 16 GPUs

normalized to Baseline with 4, 8, and 16 GPUs.

6.2 Sensitivity Analysis

Transfer Granularity. Here, we evaluate the performance impact

of varying the transfer granularity. So far, the transfer granularity

is set to 4 bytes. A small transfer granularity offers good coalescing

ratio, while large transfer granularity incurs less metadata overhead

per transfer. Thus, we evaluate the effect of increasing the transfer

granularity from 4 to 8 to 16 bytes on performance. Our evaluation

shows that 4 − 𝑏𝑦𝑡𝑒 offers the best traffic reduction. It improves
upon 8 − 𝑏𝑦𝑡𝑒 and 16 − 𝑏𝑦𝑡𝑒 by 3% and 15%, respectively. Since
99% of accesses in cache insensitive workloads are 4 byte accesses

(see Fig. 5), increasing transfer granularity above 4 bytes incur

unwanted data transfer and less coalescing ratio.

Buffer Timeout.We also study the impact of varying the buffer

timeout to show the trade-off between spending more time to ac-

tively coalesce newer requests and aggressively issue remote re-

quests. We execute DualOpt with a buffer timeout of 10, 30, and

50 cycles. Increasing the timeout from 10 to 30 cycles improves

performance by up to 4%. However, further increasing the timeout

to 50 cycles starts to lower performance (up to −2%) as requests

spend more time and block other outgoing requests.

CTA Scheduling Policy.We investigate the performance benefit

of DualOpt under different CTA scheduling policy, i.e., round-robin

and greedy. The average performance improvement in round-robin

and greedy systems is 2.5× and 2.7×, respectively. In a nutshell,
DualOpt is general and works in different CTA scheduling policy.

Interconnect Bandwidth. In order to solve the inter-GPU band-

width bottleneck, recent works [15, 29] have offered high bandwidth

interconnect. Thus, we evaluate DualOpt in high-bandwidth inter-

GPU fabric similar to PCIev5 and PCIev6. DualOpt outperforms

the Baseline by 2.5× (on average) in both cases.
Large Flit Sizes. Irrespective of their limitations, such as high

hardware costs [22], large flit sizes can reduce inter-GPU congestion.

Thus, we evaluate how DualOpt performs with large flit sizes. Our

result shows that, DualOpt is able to improve a Baseline with a
32 and 64 byte flit by an average of 2× and 1.8×, respectively.
Scalability. Finally, we evaluate the performance of DualOpt

on 8 and 16 GPUs. Fig. 18 presents that DualOpt improves the

performance of a multi-GPU with 8 and 16 GPUs by 2.8× and 2.9×,
respectively. In summary, this demonstrates that DualOpt is able

to deliver performance with more GPUs in the system.

6.3 Comparison With Prior Works

We compare DualOpt with Griffin [5], a state-of-the-art page mi-

gration based scheme. On average, DualOpt outperforms Griffin

by 4× as shown in Fig. 19. Specifically, DualOpt unlocks high
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Figure 19: Performance of DualOpt normalized to a state-

of-the-art prior work Griffin [5].

Program-
mability

Transfer
Granularity

No Replication
Cost

HW
Complexity

CARVE [42] � Cache line � �
Griffin [5] � Page/Cache line � �
Proact [27] � Fine-grained � �
GPS [26] � Fine-grained � �

DualOpt � Fine-grained/Cache line � �

Table 3: Comparison of DualOpt with related works.

Component BGU SCBU MSHR CODEC

Area (𝜇𝑚2) 964.99 202.94 697 37234
Power (𝑚𝑊 ) 0.43 0.27 0.1 31.9

Table 4: Hardware overhead of DualOpt.

performance in atax and bicg by evading cache-related stalls via
cache bypassing. In addition, TLBs in our Baseline [36] can cache
translations of remote memory address space, boosting their perfor-

mance. We also qualitatively compared DualOpt with other prior

works [5, 26, 27, 42] in Table 3.

6.4 Resource Overheads

Additional hardware units added in DualOpt are: (1) a BGU per

CU that generates the 2-byte bit masks used for fine-grained ad-

dressing, (2) an SCBU augmented at each cache controller which

selectively identifies and bypasses remote memory accesses, (3)

MSHR extensions to store the additional 2-byte entry of the fine-

grained addresses, and (4) the CoDeC unit at RDMA that takes care

of the coalescing and de-coalescing of remotely accessed data. Ta-

ble 4 shows the resource requirement of each component. Overall,

DualOpt incurs a 0.032% hardware overhead.

7 RELATEDWORK

7.1 Inter-GPU Communication

Numerous works have improved the performance of multi-GPU

systems [4, 5, 7, 20, 21, 25–27, 39, 42, 46]. Among these, GPS and

CARVE [26, 42] store remote data locally to reduce the inter-GPU

communication bottleneck. CARVE [42] identifies and caches re-

mote data in local DRAM, while GPS [26] replicates shared pages

in the local memory of GPUs. However, GPS requires programmer

effort to selectively replicate pages across GPUs. Moreover, data

replication in both works might degrade the performance of work-

loads with large data footprints. Unlike these approaches, DualOpt

preserves programmability and requires no in-DRAM storage. Du-

alOpt uses a hardware-only architecture to automatically deliver

locality-aware optimization.

7.2 Intra-GPU Communication

Prior works [23, 24, 32–34, 45] have proposed a diverse memory

subsystem optimization for cache usage and interconnect. Some of

these techniques date as far back as the IBM 360 in the 1960’s [24].

Prior works [23, 32] have proposed sub-cache line (32 byte) data

transfer and storage. There are also works [45] that leverage cache

bypassing techniques to reduce cache thrashing. In contrast, Du-

alOpt uses a fine-grained transfer (as small as 4 byte) of remotely

accessed data in the context of multi-GPU systems. Moreover, co-

alescing of these fine-grained remote data is applied to further

reduce interconnect traffic. There are also works that use inter-core

communication to implement a shared L1 cache and L1 TLB in

GPUs [6, 10, 13, 17, 38, 40]. Intra-GPU communication schemes

are complementary to DualOpt, which targets closing the local to

remote memory bandwidth gap in multi-gpu systems.

7.3 NUMA-Aware Caching

Different NUMA-aware caching techniques has been extensively

explored in both CPUs and GPUs [11, 16, 18, 19, 25, 31, 41, 43]. The

earliest works have used a portion of the last level cache (LLC) to

store remotely accessed data [25]. To overcome the size limitation

of the LLC, other works have re-purposed DRAM as temporary

storage [42]. However, in case of memory over-subscription, the

benefit from DRAM caching may not be enough to compensate

for the costly memory accesses to the CPU. This is particularly

frequent in irregular workloads. In contrast, DualOpt exploits

caching at the RDMA only when it is profitable; we carefully assess

the profit based on the locality of the workload. If the workload has

good cache locality (cache-friendly), we will locally store a remotely

accessed data. Otherwise, DualOpt bypasses remote accesses and

dedicates all cache capacity for local accesses.

8 CONCLUSION

This paper explored the impact of locality to optimize the costly

remote memory accesses in multi-GPU systems. Based on our work-

load characterization, we demonstrated the need for locality-aware

optimizations instead of a one-size-fits-all approach. Thus, we pro-

posed DualOpt, a hardware-only design that deliver locality-aware

optimizations to reduce memory access latency. DualOpt opti-

mized cache-insensitive workloads by implementing fine-grained

remote accesses instead of traditional cache line transfers. These

fine-grained remote data are then coalesced to save the scarce inter-

GPU bandwidth, DualOpt optimized cache-friendly workloads by

allocating an RDMA Cache to retain remote data locally. DualOpt
uses a decision engine to automatically identify and deliver opti-

mizations catered to the locality of the workload. Our evaluation on

representative workloads showed that DualOpt reduces inter-GPU

traffic by 4.4×. This translates to a 2.5× performance improvement
on a 4-GPU system, with a hardware overhead of 0.032%.
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