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Abstract

ReadUntil enables Oxford Nanopore Technology’s (ONT) sequencers to selectively sequence 

reads of target species in real-time. This enables efficient microbial enrichment for applications 

such as microbial abundance estimation and is particularly beneficial for metagenomic samples 

with a very high fraction of non-target reads (> 99% can be human reads). However, read-until 

requires a fast and accurate software filter that analyzes a short prefix of a read and determines 

if it belongs to a microbe of interest (target) or not. The baseline Read Until pipeline uses a deep 

neural network-based basecaller called Guppy and is slow and inaccurate for this task (~60% 

of bases sequenced are unclassified). We present RawMap, an efficient CPU-only microbial 

species-agnostic Read Until classifier for filtering non-target human reads in the squiggle space. 

RawMap uses a Support Vector Machine (SVM), which is trained to distinguish human from 

microbe using non-linear and non-stationary characteristics of ONT’s squiggle output (continuous 

electrical signals). Compared to the baseline Read Until pipeline, RawMap is a 1327X faster 

classifier and significantly improves the sequencing time and cost, and compute time savings. We 

show that RawMap augmented pipelines reduce sequencing time and cost by ~24% and computing 

cost by 22%. Additionally, since RawMap is agnostic to microbial species, it can also classify 

microbial species it is not trained on. We also discuss how RawMap may be used as an alternative 

to the RT-PCR test for viral load quantification of SARS-CoV-2.
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1. Introduction

Novel infections and pandemics are on the rise [1]. In the context of the COVID-19 

pandemic, changes to the human microbiome are increasingly understood as a biomarker 

[2,3,4] which can help in patient risk stratification and mitigate disease severity [5]. 

Understanding the human microbiome can also provide additional benefits such as providing 

prophylactic and therapeutic tools to improve human health [6] and thereby, increasing 
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colonization resistance against infections [7]. Along with microbiome identification and 

quantification, viral load is another metric linked to COVID-19 disease severity and 

mortality and helps in risk stratification [8]. As a means to estimate the microbiome, 

DNA sequencing has immense potential to transform personalized healthcare through the 

early discovery and detection of diseases. Metagenomic abundance estimation (relative 

quantification of taxa) from long DNA reads is a less explored domain as we learn in 

Section 2. Moreover, efficient enrichment and sequencing of microbial DNA from non-target 

rich metagenomic samples with unknown microbial constituents is an unsolved problem. 

Oxford Nanopore Technology’s (ONT’s) portable long-read DNA sequences, MinION, has 

a minimal operational and logistical footprint, and real-time capabilities, making it a unique 

candidate for this purpose [9]. Assays of SARS-CoV-2, Ebola, Zika, tuberculosis, and 

various other pathogens have been successfully conducted using MinION [10]. Nanopore 

sequencers monitor the electrical signal fluctuations from a strand passing through a 

nanopore channel and decode the specific DNA/RNA sequence. Sequencing costs us both 

time and money. Flowcell washes and longer sequencing times degrade the quality of a 

flowcell over time. Replacing degraded flowcells and wet-lab reagents adds to sequencing 

cost. In order to reduce the sequencing and compute footprint, it is essential to ensure only 

target microbial reads are completely sequenced and nontarget human reads are ejected. 

Finally, we show that the time saved in nanopore sequencing is cost saved in Section 6.8. 

Human samples can have a significant fraction of non-target reads – greater than 99% of 

total reads are non-target human reads in most clinical respiratory samples [11]. Sequencing 

these non-target reads would otherwise be a waste of sequencing time and cost. Moreover, 

it is important to not miss target reads in order to accurately characterize the microbiome. 

Undetected target reads especially from a low-abundant species can offset the relative 

abundance. Hence, prior works choose to sequence all of the unclassified reads [12]. We 

follow the same practice. Selective Sequencing or Read Until [9] is a digital enrichment 

protocol for molecule-by-molecule real-time sequencing of only the target reads in ONT 

sequencers. As a DNA fragment moves through a MinION nanopore, fluctuations in the 

pore’s electric current are decoded in real-time to provide active feedback to the pore. 

Target fragments of interest are sequenced, while fragments deemed non-target are ejected 

by reversing the pore bias voltage. Read Until saves sequencing time and cost, apart from 

compute time savings. The state-of-the-art (baseline) Read Until pipeline, Readfish [12], 

sequences unclassified reads and iteratively updates the alignment index for read Until target 

classification. For microbiome abundance estimation, Readfish uses a software pipeline 

consisting of a basecaller (Guppy [13] is a deep neural network that decodes raw squiggle 

output from the sequencer to bases), an aligner (Minimap2 [14] maps DNA read to the target 

genome using approximate string matching), and a metagenome classifier (Centrifuge [15] 

classifies the read into a taxonomic rank). However, Readfish has a two-fold performance 

problem – low throughput and accuracy (on small signal chunks) of the basecaller. Prior 

works have shown that real-time basecalling using deep neural networks cannot keep up 

with the throughput of the sequencer and this problem is amplified by the projected growth 

in future sequencing throughput [16]. Additionally, prior works have reported the inaccuracy 

of Guppy in basecalling small signal chunks [17,18]. We observe that this translates to 

59.5% of the sequenced bases being unclassified (as shown in Figure 2) in a 99:1 host: 

target sample with an average read length of 8.29 Kbases. We analyze and observe that 
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these unclassified bases are basecalled with low Phred quality scores as shown in Figure 

1 and hence, aligners like Minimap2 and BLAST are unable to align them. We envision a 

portable, fast, and inexpensive diagnostic solution for the digital enrichment of the human 

microbiome and downstream applications including microbiome abundance estimation 

and viral load quantification. Our fast and accurate diagnostic solution can decentralize 

sequencing and democratize personalized healthcare. We propose an efficient CPUonly 

software solution to classify these low-quality read prefixes using RawMap, a squiggle space 

Read Until classifier. Our feature engineering enables RawMap to identify non-linear and 

non-stationary characteristics of a raw read prefix and distinguish the host from the target 

in a simple 3-D feature space with very low computational overhead. RawMap is also 

capable of identifying previously undetected microbial species and is offered as a “plug-and-

play” solution without disrupting the baseline Read Until pipeline. Our proposed RawMap 

augmented pipeline 1 saves ~24% sequencing time and cost whereas pipeline 2 saves ~22% 

compute time. Our evaluations are performed with respect to a baseline Read Until pipeline 

on a 99:1 host: target sample with an average read length of 8.29 Kbases. Additionally, 

we demonstrate howRawMap may be utilized to skip the expensive basecalling step and 

perform viral load quantification in a sample mix of human and SARS-CoV-2. In some 

settings, viral load is linked to disease severity and mortality and helps in risk stratification 

[8]. Colorimetry-based Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test is 

the most commonly used method for viral load quantification [19]. However, RT-PCR-based 

tests often have complex primer design, manufacture, and distribution steps [16] and may 

have a significant number of false positives from various sources of contamination if the 

assay is not well-validated [20, 21]. In the end, we present a case of using RawMapto skip 

the expensive basecalling step for sequencing-based viral load quantification.

2. Related Work

Metagenomic data analysis and abundance estimation are well-studied for short reads [22–

27] but that is not the case for long reads. MetaMaps [28] is a long-read abundance estimator 

it is resource hungry. Centrifuge [15] is resource efficient and works for both short and long 

reads. But, we observe that using Centrifuge alone does not produce sufficiently accurate 

results as discussed in Section 5.1. Read Until is an emerging domain of research. The 

first attempt at Read Until sequencing used a signal space technique called subsequence 

Dynamic Time Warping where a raw nanopore query signal is aligned to an in silico 

signal representation of a reference sequence [29]. However, this method is not scalable to 

reference sequences larger than tens of kilobases as the runtime is quadratic in the reference 

length. SquiggleFilter [16] (ASIC) and HARU [30] (FPGA) are hardware-accelerated Read 

Until solutions but their performance is optimal only for a small reference target (order of 

Kilobases) as they are constrained by the hardware’s small buffer size and hence, are not 

suited for abundance estimation of multiple target microbial references (typically millions of 

bases). Readfish, the most widely adopted ReadUntil pipeline today [12], uses a basecaller 

followed by an aligner, Minimap2 to make a decision on a small chunk of data in the 

basecalled space. However, this method fails to bring out optimum savings as we find that a 

very high fraction of sequenced bases are from non-target reads as they get basecalled with 

low-quality scores and are hence, unintentionally sequenced. Additionally, the basecaller 
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Guppy cannot meet the increasing throughput of the sequencer [16]. UNCALLED [19] uses 

a probabilistic k-mer approximation from the signal space followed by alignment using 

BWAMEM to identify target reads and perform metagenomic classification. However, we 

do not compare directly with UNCALLED because of two reasons. UNCALLED needs to 

know the constituents of the sample apriori to form the reference index for classification. 

This is not possible in situations where the target microbiome/infectious agent is unknown. 

UNCALLED cannot use a non-target (human genome in this case) reference because 

UNCALLED is shown to not scale to references above 100Mb and performs poorly 

on highly repetitive references. Secondly, UNCALLED’s k-mer approximation is directly 

dependent on a k-mer reference current model which is retired by ONT for all newer and 

future nanopore chemistries. Sigmap [18] is another Read Until classifier in the signal space 

that detects events and does Minimap2 style [14] chaining to attempt to map the read to 

a target. However, Sigmap also needs to know the constituents of the input sample apriori 

and creates an index which is ~20 X the index size of UNCALLED for a single target. 

SquiggleNet [31] is the only prior work that can classify long-reads of unseen microbial 

species. SquiggleNet uses a deep learning model. However, SquiggleNet is shown to be 

only as accurate as Guppy followed by Minimap2, and is slower [31]. This does not solve 

our problem of accuracy and throughput. The viral load has commonly been estimated 

from time-consuming wet-lab enriched tests [8,32]. Recent efforts have focussed on direct 

sequencing from high throughput short read sequencers [33]. However, there exists no prior 

work discussing viral load quantification from direct nanopore long-read sequencing, to the 

best of our knowledge. Although the trends in pore occupancy with Read Until have been 

previously studied [12,17], Read Until resulting in reduced sequencing cost has not been 

quantitatively discussed before.

3. Background and Motivation

3.1 Microbiome Abundance Estimation

Human lung microbiome is the aggregate of all microbiota that reside on or within 

lung tissue and biofluids. Characterizing the abundance of the human microbiome helps 

researchers to understand the health status of the human lung [34]. Lung microbiota 

composition can be a biomarker of existing health conditions. Hence, the accuracy of 

microbiome abundance estimation is important. Species abundance as defined by Centrifuge 

[15] does not incorporate the variability of nanopore read lengths and ploidy (number of 

sets of chromosomes in a cell) of species. To fix this, we define cell number microbiome 

abundance of species j, Aj as follows:

Aj =
Bj
ljpj

∑k = 1
S Bk

lkpk

where Bk is the total number of bases that correspond to species k, lk is the genomic 

reference length of species k, pk is the ploidy of species k and S is the total number of 

species discovered, excluding the host. For evaluation, in our case where the ground-truth 
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abundance is known, the error in estimated abundance is quantified using two metrics: mean 

deviation and maximum deviation.

Mean deviation = 1
S ∑

k = 1

S
ek − gk

Max .  deviation = max ek − gk ∀ kS

where ek is the estimated abundance and gk is the groundtruth abundance of species k. As 

discussed, we do not need to sequence the human DNA to calculate microbiome abundance. 

It has been discovered that non-target human reads in most clinical respiratory samples 

can be greater than 99% [11]. Hence, it would be ideal to discard the non-target reads and 

sequence the target microbial reads alone if it would help save sequencing time and cost.

3.2 Nanopore Sequencing

Nanopore sequencing is a novel technology that enables direct, realtime analysis of long 

DNA or RNA fragments. As nucleic acids pass through a protein nanopore, electric current 

fluctuations are monitored and decoded to provide the specific DNA or RNA sequence. 

Long reads are better than short reads for whole genome assembly as they can span 

long repetitive regions and structural variations. In 2014, Oxford Nanopore Technologies 

(ONT) introduced the world’s first nanopore sequencer, the MinION - a portable, real-

time, long-read, low-cost device weighing just 87g. MinION is used in a wide range of 

applications including single-cell sequencing, structural variant calling, gene expression 

analysis, assembly, detection of base modifications, and metagenomics. The assay of Ebola, 

Zika, tuberculosis, and various other pathogens has been successfully conducted using 

theMinION in the past [35]. More recently, MinION has also been used by researchers 

worldwide to share sequenced SARS-CoV-2 data [36].

3.3 Cost of Nanopore Sequencing

There are two components to the cost involved- sequencing and compute. The cost of 

sequencing includes flowcell cost and reagent cost. A MinION flowcell costs $475 and can 

sequence up to 50 Gigabases(Gb) on average during its lifetime. We estimate a fixed reagent 

cost of ~$21 (with QIGEN’s QIAamp DNA Mini Kit for extraction, ONT’s SQKRAD004 

for library prep, and SQK-RBK004 for a 12-way barcoded run) per experiment, and a 

variable flowcell cost of ~$6 per every hour of sequencing (based on estimated flowcell 

throughput of 0.59Gb/hr). Reduced time to answer means the flowcell may be used for 

other applications within its lifetime. ONT has defined a protocol for real-time selective 

sequencing, which we leverage to save pore-use time during a single run. Reduced pore-use 

time can lower flowcell costs incurred from a single run. We show that sequencing time 

saved is flowcell cost saved in Section 6. For the sake of simplicity, we will refer to the 

variable flowcell related cost as sequencing cost. Further, compute-related costs can stem 

from the costs of using cloud or shared computing resources.
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3.4 Read Until

Traditionally, selecting regions of interest from a sample involved significant time-

consuming manipulations of DNA prior to sequencing: PCR, Cas-mediated enrichment, 

or hybridization capture [37–39]. ONT MinION is the first to implement a protocol 

for molecule-by-molecule real-time selective sequencing or Read Until [29]. As a DNA 

fragment moves through the nanopore, the fluctuations in the pore electric current are 

decoded in real-time to provide active feedback to the pore. Fragments of interest are 

sequenced by default, while fragments deemed non-target are ejected by reversing the pore’s 

bias voltage. In cases like human lung microbiome abundance estimation, where there is 

very high contamination (host: microbe ratio of 99: 1), digital enrichment provides a simpler 

workflow and negates any need to deplete the host during sample preparation. Previously, 

it has been shownthat pores performing Read Until are only clogged temporarily [17]. We 

extend this observation to show that sequencing time saved is cost saved in Section 6.

3.5 Read Until Pipeline

Our baseline, a two-stage pipeline for microbiome abundance estimation is derived from 

Readfish [12] but with minor modifications. Guppy is used for basecalling the squiggles. 

We customize Minimap2 for better accuracy as discussed in Section 5. Centrifuge, a 

metagenomic classifier with a microbial and human index constructed from NCBI non-

redundant nucleotide database operates on full-length basecalled reads. Centrifuge does the 

species-level classification and identifies those taxonomy IDs which get more than 0.005% 

reads assigned. Reference genomes corresponding to those species’ identified by Centrifuge 

are downloaded in real-time from the online RefSeq database to keep our memory footprint 

small. Subsequent read prefixes are mapped by Minimap2 on an expanding set of references 

generated from Centrifuge operating on full-length reads. If Minimap2 detects a non-target, 

the read is reversed. All unclassified reads from Minimap2 are sequenced so that Centrifuge 

can iteratively build the ‘refined index’- an alignment index for Minimap2 constructed 

on-the-fly from a small set of target species detected by Centrifuge. In summary, Centrifuge, 

a low memory footprint, less accurate classifier is used to build a ‘refined index’ for the 

highly accurate mapper, Minimap2 to make Read Until decisions.

3.6 Inefficiency of the Baseline Pipeline

The baseline Read Until pipeline cannot classify and detect 59.5% bases sequenced because 

they are basecalled with lower Phred quality scores as shown in Figure 1 for a 99: 1 host: 

target sample with an average read length of 8.29Kb. Further, it is observed that low-quality 

reads translocate slowly at a median rate of 270 bases/s. We cannot eject the unclassified 

reads because Centrifuge needs them for building the refined index. The percentage of 

unclassified non-target bases (99% of 59.5%) sequenced is an even bigger problem for long 

reads as shown in Figure 2. Reducing these unclassified non-target bases would help reduce 

irrelevant data footprint, and improve time and cost savings. We realize that classification is 

a simpler and different task from basecalling. We engineer features from the squiggle space 

and classify the unmapped read prefixes.

With RawMap, we propose an efficient CPU-only solution to identify non-target reads 

missed by Guppy. RawMap does not alter the standard Read Until pipeline much, it is a 
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“plug-and-play” solution which grabs information from the squiggle domain to classify a 

read prefix using a very efficient algorithm in a 3-D feature space. RawMap learns from 

the non-linear non-stationery characteristics of squiggles to identify microbes from host. 

Additionally, RawMap is microbial species-agnostic – it can classify microbial species it is 

not trained on.

4. Design

Our Read Until pipeline for abundance estimation is a modified version of the metagenomic 

enrichment pipeline [12] which uses Guppy for basecalling, Minimap2 for Read Until 

decisions, and Centrifuge for generating ‘refined index’, a set of species detected in the 

sample. Minimap2 classifies using the refined index of detected organisms’ genomes and 

instructs MinION to eject host reads. Centrifuge classifies Minimap2’s unclassified reads 

and detects organisms absent in the refined index. Additionally, we use Minimap2’s results 

on the read-prefixes for accurate abundance estimation (we can see that Minimap2 produces 

consistent accurate mappings above 450 bases in Figure 6). However, there exists a problem 

of unclassified reads with Minimap2 because Guppy basecalled these reads poorly as 

indicated by their poor base quality scores in Figure 1. Basecalling is the complex process 

of translating raw nanopore signal to a base sequence and Guppy’s network is designed 

for this particular task. Classification is, however, a much simpler problem and utilizes 

global signal-level information which Guppy may not be focusing on. Therefore, we explore 

the raw nanopore data space for additional signal characteristics and engineer features 

out of it for the task of read classification. Nanopore squiggles (rawdata) are also very 

similar to EEGas they both are non-linear and non-stationary. Priorworks have used Hjorth 

parameters to extract the time domain properties of non-stationary signals like brain EEG 

[40]. It is known in the past that genomic sequences can be transformed into a phase signal 

representation to extract Hjorth parameters in order to classify metagenomic data [41,42]. 

This is based on the idea that the characteristic changes in the phase signal can identify 

one species from another. We extend this idea by modifying the Hjorth parameters to work 

on noisy squiggle space for Read Until to find characteristic current transitions in the read 

prefix to distinguish microbes from host.

4.1 RawMap augmented Read Until Pipelines

We present RawMap, a direct squiggle-space microbial speciesagnostic Read Until classifier 

for identifying target microbial reads. RawMap is a “plug-and-play” solution which may be 

plugged into the baseline Read Until pipeline as shown in Figure 3. In the proposed pipeline 

1 with Read Until, RawMap is combined with Minimap2 for rapid microbiome abundance 

estimation. Here, Minimap2 acts as the primary classifier for target versus non-target 

while RawMap acts as a secondary classifier which identifies the non-target read-prefixes 

Minimap2 could not and instructs the MinION to eject them. We also demonstrate a very 

efficient solution with pipeline 2 in Figure 4 where RawMap acts as a fast primary classifier 

that tries to reduce the workload for the computeintensive Guppy. Guppy and Minimap2 

are acting only on reads that RawMap classifies as target and lets through. There is also a 

secondary instance of RawMapfine-tuned to classify reads unclassified by Minimap2. We 

compare the benefits of each of these pipelines in Section 6. RawMap’s algorithm has three 
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main components: signal preprocessing, feature extraction, and Support Vector Machine 

(SVM) based classification. Signal pre-processing normalizes the noisy nanopore signal, 

feature extraction calculates the modified Hjorth parameters and the SVM classifier does the 

target vs. host classification.

5. Materials and Methods

5.1 Read Until Baseline for Abundance Estimation

Similar to the recent work on adaptive sampling for metagenomic enrichment [12], we 

have a Read Until pipeline with Guppy for basecalling, Centrifuge for iteratively building 

the ‘refined index’ which consists of species detected and Minimap2 trying to map every 

read-prefix to this ‘refined index’. Unmapped reads are sequenced in full for Centrifuge 

to build the ‘refined index’. However, our baseline pipeline does not use Centrifuge for 

abundance estimation but has an additional final stage to do this because we find that a 

customized version of Minimap2 is better at abundance estimation than Centrifuge as shown 

in Figure 5. It is observed that the minimizer-based seeding in Minimap2 helps only with 

the speed of alignment and turning it off can improve the number of reads mapped without 

affecting the accuracy of mapping as in Fig. 6. We turn off the minimizer-based seeding 

in Minimap2 by using the command line parameters ‘-w 1 -k 15’ during the construction 

of the ‘refined index’. This is referred to as customized Minimap2 or minimap2_custom. 

In the last stage of the pipeline, we take batches of 1000 microbial read classifications 

from Minimap2 to calculate the cell number abundance. We sequence until the ‘refined 

index’ does not change and the estimated microbiome abundance does not deviate more 

than 5% on an average from the previous estimation for two successive iterations. For 

our experiments with Zymo microbial community standard, it is observed that we need to 

sequence until approximately 8000 target Zymo High Molecular Weight (HMW) reads (~1X 

ZymoHMWcoverage). For our evaluations, we stop pipelines 1 and 2 as soon as 8000 target 

Zymo reads were sequenced and identified.

5.2 Implementing RawMap

We trim the first 2000 raw data samples to eliminate adapter stalls and noninformative 

adapter-barcode regions and then process the next 450 bases equivalent (~6667 samples) 

of rawdata. The median and Median Absolute Deviation (MAD) of this raw data are then 

calculated. Outliers are filtered out as follows: only raw data within a range of 5 MAD 

deviations from the median are considered for further processing. The filtered channelscaled 

current values are then Median-Median Absolute Deviation (MEDMAD) normalized by the 

signal pre-processor. This squiggle segment y corresponding to 450 bases of a read is then 

mapped to a 3-D feature space using a modified version of Hjorth parameters by the feature 

extractor. It is observed that MED and median are robust to the outliers and hence, yield 

cleaner nanopore signals. The Hjorth parameters are modified by calculating the variance 

from MED and MAD instead of the originally used mean and standard deviation. We define 

modified Hjorth parameters as follows:

Activity = var(y)
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Mobility = var(y′)
var(y)

Complexity = mob(y′)
mob(y)

where y is the normalized raw data segment corresponding to 450 bases, y’ is the first-order 

difference of the signal and var is the modified variance. Activity captures the signal power, 

mobility is the mean frequency and complexity is the change in frequency. The modified 

Hjorth parameters help us find a localized region where the microbial signals map to, as 

shown in Figure 7. RawMap uses a Support Vector Machine (SVM) with a Radial Basis 

Function kernel. For pipeline 1, the SVM is trained on 6000 squiggles each of human and 

Zymo from a 50:50 barcoded run with 10-fold crossvalidation to capture the non-linear 

and non-stationary characteristics of the nanopore squiggles. For RawMap to be tuned as 

a primary classifier for pipeline 2, 100K squiggles of each Zymo and human were used to 

capture the high variation in current characteristics. AUC was used as a scoring metric for 

model validation instead of accuracy and hyper-parameters were tuned using grid search.

5.3 Configurations

For our Read Until baseline, we use the ONT recommended version of Minimap2, v2.17 for 

ONT long reads and we turn minimizers off for better classification accuracy. Guppy v4.0.11 

in high-accuracy mode is used for basecalling and is invoked using ONT’s pyguppyclient 

server for Read Until. Centrifuge v1.0.4 with a human and microbial nucleotide (NT) index 

is used as explained under Section 3.5.We further add the capability to calculate cell number 

abundance to Minimap2. RawMap is evaluated using a single-threaded execution on an Intel 

Xeon E5–2697 ×86 processor. Guppy runs on NVIDIA GeForce GTX-1080.

5.4 Wet-lab

All sequencing libraries were prepared using ONT’s Rapid Sequencing Kit (SQK-

RAD004).We conduct two types of experiments: barcoded and unbar coded. In our barcoded 

experiments, ONT’s Rapid Barcoding Kit (SQK-RBK004) is used for barcoding quantified 

host and target separately for ground truth abundance generation. The barcoded experiments 

are run with extracted human DNA from Coriell’s NA12878 and ZymoBIOMICS High 

Molecular Weight DNA Mock Microbial community (‘Zymo HMW’, cat #D6322). The 

non-barcoded experiment is run with HeLa human extracted genomic DNA (New England 

BioLabs, cat# N4006) and ZymoBiomics Microbial Community DNA Standard (‘Zymo’, 

cat# D6306). Finally, we conduct an experiment to understand how Read Until damages the 

flowcell. For this, we divided a new high-quality flowcell into two equal sequencing regions: 

half the active pores sequencing fulllength reads and the remaining half rejecting every read 

at 450bp. The pore status (control vs Read Until) is chosen in a checkerboard fashion and is 

fixed. The number of active pores is normalized to the number we started with for both sets. 

After 6.5 hours of sequencing, the flowcell is then washed and MUX-ed to the same set of 

sequencing pores as before. Comparing the percentage of active pores that recovered in both 
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regions would tell us the damage caused by Read Until. Additionally, the wet-lab protocol 

suggested for viral load quantification is ONT’s proposed Sequence Independent Single 

Primer Amplification (SISPA) pipeline [43] for metagenomic sequencing. Here, full-genome 

amplified RNA is reverse-transcribed and sequenced as cDNA. This protocol is independent 

of the viral species present and hence, universal.

5.5 Definitions & Datasets

“Premix” refers to biologically mixing the prepared libraries of NA12878 and Zymo HMW 

prior to sequencing. “Premix”-ed sequencing runs have unique barcodes for ZymoHMWand 

HeLa. “Post-mix” refers to datasets sequenced independently from HeLa and Zymo and 

mixed digitally. “Zymo HMW-subset” is created by using only four out of eight different 

Zymo HMW species for training and the remaining four for testing. We have 4 pre-mixed 

datasets (50:50: for training, 99:1: Run 1, 99:1: Run 2, and 99:1: Run 3). The zymo-HMW 

subset is from Run 1. We also have 2 post-mixed datasets (50:50: for training, and 99:1: for 

testing). We have 200K-1.4M reads in each of the datasets. Training and testing are always 

performed on different datasets, training on 50:50 and testing on 99:1. Zymo and Hela 

datasets sequenced in our lab are available at DOI:https://doi.org/10.5281/zenodo.7349378. 

The viral load quantification study is performed on 7K SARS-CoV-2 (R. Faria, 2020) and 

105K human cDNA reads [44] which are already publicly available.

6. Results

6.1 Read Until Benefits

The two proposed pipelines offer savings in terms of sequencing and compute time with 

respect to baseline Read Until pipeline. In Section 6.8, we show that sequencing time 

saved directly translates to sequencing cost saved. Our proposed pipeline 1 yields the best 

sequencing time and cost savings with respect to baseline Read Until pipeline (23.79% of 

savings) as shown in Figure 8. Pipeline 2 performs slightly worse than pipeline 1 because 

of RawMap’s lower classification accuracy compared to Guppy followed by Minimap2. 

Pipeline 2 is beneficial if compute time and cost is a concern (Cloud GPU instances are 

~10% costlier than their CPU counterparts). Pipeline 2 yields a 22% compute time savings 

compared to baseline and pipeline 1 (Figure 9). This is because non-target human reads are 

filtered out from the basecalling-aligning path by RawMap. It is observed that we get higher 

Read Until benefits from longer average read lengths (Figure 10). The blue-dashed line 

depicts the maximum benefits attainable with a 100% accurate classifier with zero latency of 

compute. Additionally, Read Until also yields higher benefits when the host contamination is 

high i.e, when we are looking for a needle in a haystack (Figure 11).

6.2 Untargeted Classifier

In pipeline 1, RawMap complements Minimap2 and improves overall pipeline accuracy 

and sequencing time while it improves compute time in pipeline 2. Additionally, we also 

evaluated RawMap as an untargeted filter (capable of correctly detecting newmicrobial 

species RawMapis untrained on) as shown in Figure 12. Here, RawMap is freshly trained on 

a total of 12000 reads from four Zymo HMW species (Pseudomonas aeruginosa, Salmonella 

enterica, Enterococcus faecalis, and Listeria monocytogenes) and human from a 50:50 
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premixed barcoded sample. RawMap is then tested on 800K reads of both human and four 

other Zymo HMW species (Saccharomyces cerevisiae, Escherichia coli, Staphylococcus 

aureus, and Bacillus subtilis) from a new sequencing run of 99:1 premixed barcoded sample. 

The confusion matrix values obtained in this case are very close to when RawMap was 

trained on all 8 species (targeted classifier) of Zymo HMWand human as shown in Figure 

12. Hence, RawMap can function both as a targeted and an untargeted (microbial species-

agnostic) classifier. This is particularly advantageous for cases where we do not know the 

input constitution mix.

6.3 Sensitivity to Wet-lab

However, RawMap seems to be sensitive to the wet-lab protocols followed. RawMapis 

retrained for a different set of wet-lab protocols (newextraction techniques and no barcodes). 

Without re-training, RawMap did not perform as expected on 100K reads from 99:1 post-

mixed run of extracted HeLa and ZymoBiomics Microbial Community DNA Standard 

sequenced (purchased from differently extracted sources) as shown in Figure 13. This is 

because RawMap is trained to capture nuances in electrical signals of the host and target 

and the signal: noise ratio is a function of wet-lab protocols followed. However, as shown 

in Figure 13, RawMap produced good results when retrained on 12000 reads from 50:50 

HeLa: Zymo non-barcoded post mixed run which used the same set of wet-lab protocols 

(differently extracted DNA and no barcodes) and tested on 200K reads as shown in Figure 

13.

6.4 Abundance Estimation

We also observe that pipeline 1 produces more accurate abundance estimates than pipeline 2 

while being faster than the baseline. We observe that pipeline 1 has an estimated cell number 

abundance with an average deviation of 8.97% and a maximum deviation of 24.8% from 

Zymo HMW’s ground truth. This is in line with what the baseline pipeline identified as 

shown in Fig. 14. The difference is that pipeline 1 is faster than the baseline. Pipeline 

2’s result is comparatively more erroneous because RawMap as the primary classifier 

consistently misses a certain fraction of reads which are viable for abundance.

6.5 Compute Efficiency

RawMap on a CPU is 1327X faster than Guppy-followed-by-Minimap2 which uses a GPU. 

This stems from the fact that RawMap is a highly efficient C++ program that performs a 

simple set of linear and statistical operations and hence, requires less compute compared 

to the deep neural network used in Guppy. Figure 15 shows the insignificant compute 

burden introduced by RawMapon the baseline Read Until pipeline. This motivates the use 

of RawMap as the primary filter in our proposed pipeline 2 instead of Guppy followed by 

Minimap2.

6.6 Training

RawMap uses a Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel 

as it gives the bestAUC (as shown in Figure 16). AUC was used as a scoring metric for 

model validation and hyper-parameters were tuned using grid search. Additionally, we also 
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tried both linear and RBF kernels, and 11 additional features from the EEG space including 

Petrosian and Higuchi fractal dimensions, Fischer information, Hurst exponent, third and 

fourth moments, windowed maximum, minimum, and median (size=10), absolute change 

and correlation as shown in Figure 16.

6.7 Viral Load Quantification

We also demonstrate howpipeline 2 may be used for efficient viral (SARSCOV- 2) detection 

and load quantification. Since the Zymo community standard is not representative of the 

virus, we re-train RawMap. RawMap is re-trained on a 50: 50 digital mix of target SARS-

CoV-2 and human host cDNA (12K reads) and then tested on a digitally mixed 99:1 host: 

target mix (100K reads). RawMap correctly retained ~89% of all SARS-CoV-2 reads while 

filtering out ~95% of the human reads (Figure 17). Therefore, only a small fraction of 

human reads are sent to the compute-intensive step of Guppy basecalling. Minimap2 filters 

out the small number of additional human reads that RawMap missed. This translates to 

~14 viral copies in the test dataset if SARS-CoV-2 RNA is 30Kbp long and the average 

read length is 475 bases. If the volume of the wet-lab sample is available, the number 

of viral copies per μl can then be estimated. This demonstrates a pipeline for viral load 

quantification that is computationally less expensive, as we skip basecalling and alignment. 

If one prefers more accurate viral load estimation, pipeline 1 may be adopted. In the future, 

when a viral community standard is available, RawMap may also be re-trained to function as 

an untargeted classifier for virus versus host cDNA.

6.8 Read Until’s Effect on Pore-life

We demonstrate that Read Until does not hurt the pore any more than normal sequencing 

does. There is no significant difference between the active number of channels between the 

control and the Read Until regions of the flowcell after washing followed by MUX-ing (at 

time marked with vertical dotted black line) as shown in Figure 18. The slightly higher 

active channels with Read Until pores is because of some channels getting temporarily 

unclogged from using Read Until as noted in prior works [17]. Therefore, using Read Until 

(with reduced time to answer) will let us pack more useful work into the lifetime of a 

flowcell. It should be noted that the Read Until benefits from experiments may depend on 

many factors including sample mix constitution, average read length, and capture time of 

the experiment. We provide an analytical model (explained in the Supplementary section) to 

help estimate the savings.

7. Conclusion

Reduced time to answer for microbiome abundance estimation is critical for clinical 

diagnostics and health-care. The baseline pipeline for ONT Read Until which uses Guppy 

basecaller is slow and does not yield optimum benefits as a large fraction of the sequenced 

bases are nontarget in a non-target rich sample. RawMap is an efficient CPU-only microbial 

species-agnostic squiggle-space Read Until classifier that is developed as a “plug-and-play” 

solution to complement the baseline Read Until pipeline. We perform feature engineering 

to extract non-linear nonstationery characteristics out of ONT squiggles and learn the 

differences between human and microbe using a Support Vector Machine. RawMap is 
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1327X faster than the state-of-the-art solution and improves the sequencing time and cost, 

and compute time benefits from using Read Until. We demonstrate two different pipelines 

to optimally utilize RawMap. RawMap as a secondary filter (pipeline 1) yields 23.79% 

sequencing time and cost savings whereas RawMap as a primary filter (pipeline 2) yields 

~22% compute time savings compared to the baseline Read Until pipeline. We also showthat 

RawMap can serve as an untargeted filter (classify unseen species) with nearly the same 

accuracy. Additionally, we also present how RawMap may be utilized instead of RT-PCR 

tests for viral load quantification of SARS-CoV-2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Unclassified reads from Guppy followed by Minimap2 have a lower mean Phred quality 

score compared to classified reads as seen in this probability density function of Phred 

quality scores.
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Figure 2: 
59.5% of the total sequenced bases are unclassified in a 99:1 host:target sample with an 

average read length of 8.298Kb.
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Figure 3: 
Proposed pipeline 1 with RawMap as a secondary filter classifying Minimap2- unclassified-

reads, plugged-in after Guppy and Minimap2, yields best savings in sequencing time and 

cost for 99:1 sample with an average read length of 8.298 Kbases.

Sadasivan et al. Page 18

Arch Clin Biomed Res. Author manuscript; available in PMC 2023 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Proposed pipeline 2 with RawMap as the primary filter helps skip Guppy and Minimap2 for 

most of the non-target reads and offers best compute time savings.
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Figure 5: 
Customized Minimap2 with refined index is more accurate than Centrifuge for abundance 

estimation.
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Figure 6: 
(a) Customized Minimap2 with refined index has better accuracy of mapping. (b) 

Customization helps us classify more reads compared to Minimap2.
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Figure 7: 
Target (Zymo) squiggles are highly localized in the modified Hjorth space as shown in blue. 

For illustration, only 1000 feature vectors each of target and non-target are shown here.
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Figure 8: 
Pipeline 1 saves 23.79% sequencing time and cost compared to the baseline Read Until 

pipeline.
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Figure 9: 
Pipeline 2 yields 22% compute time savings compared to the baseline and pipeline 1 

because we skip the expensive basecalling step for primary filtering.
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Figure 10: 
Higher read lengths give better sequencing time and cost savings in a 99:1 host: microbial 

mix.
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Figure 11: 
Higher host: target ratio yields better sequencing time and cost savings for an average read 

length of 8.29Kbases.
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Figure 12: 
RawMap does untargeted classification as well as targeted classification.
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Figure 13: 
RawMap can be customized for different wet-lab protocols by retraining.
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Figure 14: 
Pipeline 1 and baseline produce the best abundance estimate well within the tolerance limit.
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Figure 15: 
RawMap introduces negligible overhead compared to other components in the Read Until 

decision-making path for 450bp.
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Figure 16: 
Pipeline 2 ROC: SVM with Radial Basis function kernel and three features yields the best 

base savings compared to a linear kernel and additional features.
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Figure 17: 
(a) RawMap is good at classifying SARS-CoV-2 from human. (b) ROC for human vs 

SARS-CoV-2 classification.
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Figure 18: 
Flowcell wear-out characteristics: Read Until does not clog pores any more than normal 

sequencing as evident from the equal percentage of active channels recovered after wash.
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