RAHUL NARASIMHA

Ann Arbor, Michigan | rahulnn@umich.edu

EDUCATION -

University of Michigan

Ann Arbor, MI

PhD, Electrical Engineering and Computer Science

2023 - 2028

Advisor: David Blaauw

Topic: Low-Power Analog, Digital, Mixed Signal Circuits and Systems.

R.V. College of Engineering

Bangalore, India

Bachelor of Engineering, Electronics and Communication

2016 - 2020

WORK EXPERIENCE —

Infineon Technologies (Formerly Cypress Semiconductors)

Bangalore, India

Electrical Design Engineer, Connected Secure Systems (CSS)

2020 - 2022

- Contributed to design of Medium Access Control layer architecture for 802.11ax.
- Contributed to RTL design of WPA and WAPI encryption engine design.
- Design and Verification of Target Wake Time (TWT) module.
- Redesigned memory wrapper to migrate from pseudodual port to single/dual port memory

MILE Lab, Indian Institute of Science

Bangalore, India

Research Intern

2019

• Developed algorithm for pre-processing of Electroencephalogram (EEG) data for epochwise data extraction aimed at reducing acquisition and filtering artefacts.

RESEARCH-

Neural Recording and Stimulation (Ongoing)

2024

RF Transmitter for Localization (Ongoing)

2023

• A cm-scale, PLL based RF transmitter for global localization using LEO Satellites.

COURSE PROJECTS —

Ring Oscillator based Physically Unclonable Function (PUF)

Fall 2023

• A phase-frequency-detector based architecture with a current controlled ring oscillator focused on temperature compensation for frequency is used to generate 16 bit PUF.

Seizure Detection and Closed Loop Control.

Winter 2023

 Closed loop control is demonstrated using a Simulink model that incorporates artefact mitigation and synchronized control based on the 2D rate model for epilepsy.

Closed loop Automated Gain Control (AGC) Amplifier

Fall 2022

 Designed an AGC in 130nm CMOS based on a feedback architecture with an input dynamic range of 60dB.

Acquisition and Processing of Bio signals (Undergraduate)

2019

- Realized dual channel EEG analog front end using discrete components for acquisition of the alpha band. The setup was demonstrated using variation in attentiveness.
- Multimodal EMG / EOG acquisition circuit was implemented.

RELEVENT COURSEWORK -

University of Michigan

Analog: Monolithic Amplifier (Prof. Afshari), Analog IC Design (RF) (Prof. Wentzloff)

Mixed Signal: PLL Design (Prof. Flynn), A/D Interfaces Design (Prof. Flynn)

Digital: VLSI Design (Prof. Zhang)

Biomedical: Biomedical Instrumentation (Prof. Opri), Neural Engineering (Prof. Chestek)

R. V. College of Engineering

Digital: Digital Design - Verilog (Lab), Digital VLSI Design (Lab), Design for Testability Analog: Analog Microelectronics, Analog & Mixed Signal IC Design.

RELEVENT SKILLS ———

Design tools: Virtuoso, Spyglass, Questasim, Cadence NCsim, Verdi, MATLAB,

LabVIEW, TINA-TI, Autodesk Eagle. Languages: Verilog, VHDL, C, Python.