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Stream processing, which involves real-time computation of data as it is created or received, is vital for
various applications, specifically wireless communication. The evolving protocols, the requirement for high-
throughput, and the challenges of handling diverse processing patterns make it demanding. Traditional
platforms grapple with meeting real-time throughput and latency requirements due to large data volume,
sequential and indeterministic data arrival, and variable data rates, leading to inefficiencies in memory access
and parallel processing. We present Canalis, a throughput-optimized framework designed to address these
challenges, ensuring high-performance while achieving low energy consumption. Canalis is a hardware-
software co-designed system. It includes a programmable spatial architecture, Flux Stream Processing Unit
(FluxSPU), proposed by this work to enhance data throughput and energy efficiency. FluxSPU is accompanied
by a software stack that eases the programming process. We evaluated Canalis with eight distinct benchmarks.
When compared to CPU and GPU in mobile SoC to demonstrate the effectiveness of domain specialization,
Canalis achieves an average speedup of 13.4× and 6.6×, and energy savings of 189.8× and 283.9×, respectively.
In contrast to equivalent ASICs of the benchmarks, the average energy overhead of Canalis is within 2.4×,
successfully maintaining generalizations without incurring significant overhead.

CCS Concepts: • Computer systems organization→ Reconfigurable computing; Multiple instruction,
multiple data; Systolic arrays; Multicore architectures; System on a chip; Pipeline computing; • Hardware
→ Digital signal processing; Application specific instruction set processors; Application specific
processors; Hardware-software codesign;

Additional Key Words and Phrases: Wireless Communication, Stream Processing, Throughput-Optimized,
Software Stack

Kuan-Yu Chen was with University of Michigan, Ann Arbor, MI 48109, USA when he contributed to this work. He is now
with Tenstorrent USA, Inc., Austin, TX 78735, USA.
Authors’ Contact Information: Kuan-Yu Chen (corresponding author), University of Michigan, Ann Arbor, MI, USA: e-mail:
knyuchen@umich.edu; Thomas Mason Nelson, University of Michigan, Ann Arbor, MI, USA: e-mail: nelsontm@umich.edu;
Alireza Khadem, University of Michigan, Ann Arbor, MI, USA: e-mail: arkhadem@umich.edu; Morteza Fayazi, University
of Michigan, Ann Arbor, MI, USA: e-mail: fayazi@umich.edu; Sanjay Sri Vallabh Singapuram, University of Michigan,
Ann Arbor, MI, USA: e-mail: singam@umich.edu; Ronald Dreslinski, University of Michigan, Ann Arbor, MI, USA: e-mail:
rdreslin@umich.edu; Nishil Talati, University of Michigan, Ann Arbor, MI, USA: e-mail: talatin@umich.edu; Hun-Seok Kim,
University of Michigan, Ann Arbor, MI, USA: e-mail: hunseok@umich.edu; David Blaauw, University of Michigan, Ann
Arbor, MI, USA; e-mail: blaauw@umich.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1936-7414/2024/11-ART61
https://doi.org/10.1145/3695880

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 4, Article 61. Publication date: November 2024.



61:2 K.-Y. Chen et al.

ACM Reference format:
Kuan-Yu Chen, Thomas Mason Nelson, Alireza Khadem, Morteza Fayazi, Sanjay Sri Vallabh Singapuram,
Ronald Dreslinski, Nishil Talati, Hun-Seok Kim, and David Blaauw. 2024. Canalis: A Throughput-Optimized
Framework for Real-Time Stream Processing of Wireless Communication. ACM Trans. Reconfig. Technol. Syst.
17, 4, Article 61 (November 2024), 32 pages.
https://doi.org/10.1145/3695880

1 Introduction
The rapid development of Internet ofThings (IoT), autonomous vehicles, and artificial intelligence
increases the demand for efficient and effective stream processing in embedded applications. It is
particularly crucial in the wireless communication domain due to the real-time constraints and
the massive volume of data involved. Existing conventional compute platforms and programming
languages cannot fully address the demands. The challenges include poor support for buffer-free
stream processing, and difficulty executing workloads with diverse compute patterns efficiently.

Wireless communication workloads possess unique characteristics and constraints and require
high-performance, flexible computing platforms. Protocols are continuously evolving and diverse,
each involving different computational kernels that consist of compute-intensive loops exhibiting
diverse processing patterns in data access and computation.

Given these challenges, spatial architecture emerges as a promising solution. Spatial architectures
connect an array of processing elements (PEs) through on-chip networks, delivering data-level
parallelism (DLP) and high data reuse, thus minimizing memory access. However, the stream
processing model presents its unique set of challenges, such as managing real-time sequential data
arrival, indeterministic data availability, and variable data rates.

Previous works have made substantial progress on mapping wireless communication kernels
and workloads on spatial architectures, as well as developing spatial architectures with complete
software stacks for various domains. Yuan et al. [104] and REVEL [94] execute single kernels
efficiently using different techniques but do not demonstrate complete workloads with multiple
kernels. Yuan et al. [104] utilize the reconfiguration of functional units while REVEL [94] focuses
on executing inductive matrix algorithms with a hybrid systolic array accompanied by a compiler.
Other works focus on mapping the entire workloads. AsAP [8, 102, 103] and Troung et al. [88] map
workloads onto the computational fabric, employing asynchronous communication between cores.
Tran et al. [87] demonstrate the benefits of connecting a programmable spatial architecture with
configurable accelerators. Meanwhile, DAP [17] provides fast reconfigurability in reprogramming
speed. However, the works discussed above, excluding REVEL [94], lack a software stack, hindering
programmability and the efficient mapping of workloads to the architectures.

In other application domains, spatial architectures with software stacks have become increasingly
popular. HyCube [45] provides single-cycle communication between distant functional units using
a reconfigurable interconnect, and Ultra elastic CGRA [86] optimizes irregular loops using Dynamic
Voltage Frequency Scaling. Riptide [34] aims for minimum energy consumption with tag-less
dataflow and embedded control flow in a Network on Chip; DRIPs [84] map entire pipelined
streaming workloads onto spatial architecture, enabling dynamic balancing of resource allocation;
REVAMP [10] focuses on transforming homogeneous spatial architectures into heterogeneous
ones based on application characteristics. Many of these works fall short in addressing stream
processing, typically buffering data in the memory system before processing. This load/store assist
model leads to high and irregular output latencies.
Goal and Approach. Our goal is to design a throughput-optimized framework incorporating a

novel architecture with a co-designed software stack. The goal is to achieve the performance and
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Fig. 1. Canalis is a throughput-optimized framework for real-time stream processing of wireless communica-
tion workloads. It includes a heterogeneous programmable spatial architecture, FluxSPU, and a co-designed
software stack, that assists the user in programming FluxSPU through the CER programming interface and
transform it into FluxSPU machine code. CER, Computation Event Representation; FluxSPU, Flux Stream
Processing Unit.

efficiency of anApplication-Specific Integrated Circuits (ASICs) implementation, yet retain the
flexibility of programmable systems, merging the best attributes of both. Our framework, Canalis
(Figure 1), is specifically designed and optimized to improve the throughput of real-time stream
processing of wireless communication workloads that have little or no control flow, as shown in
our provided examples and benchmarks in later sections. Canalis is designed and implemented
with the following approaches:

First, we analyze the challenges of stream processing by contrasting the direct execution model
with the conventional load/store assist model. In the direct execution model, data are not buffered
within the memory system, which avoids costly memory accesses associated with latency and
power consumption. Such a data processing strategy proves significantly more efficient for stream
processing in the wireless communication domain, where the need for memory access is minimal.

Second, after mapping wireless communication workloads onto spatial architectures, we identify
a common structural pattern in each processing node and introduce a domain-specific Instruction
Set Architecture (ISA), Flux Stream Processing Unit (FluxSPU) ISA (Section 4). This ISA,
co-designed with microarchitectural optimizations (Section 5), specifically enhances the proposed
architecture’s ability to efficiently handle loop structures and reduces the initiation interval (II)
and significantly increases the throughput of each processing node.

Third, we connect the nodes to form the FluxSPU fabric (Section 6), a Multiple Instruction
Multiple Data (MIMD) spatial architecture, that resembles vector chaining [76] and results in
higher utilization of functional units per cycle. FluxSPU utilizes the direct execution model and
eliminates the need for global memory, replacing it with versatile queue structures between PEs.

Lastly, to effectively program FluxSPU, we develop a co-designed software stack (Section 7)
including an intuitive programming interface, Computation Event Representation (CER), and
a mapper to map and translate CER into FluxSPU machine code. CER simplifies programming
of FluxSPU by providing a simple syntax that reflects the characteristics of the architecture and
dataflow. CER does not function as a hardware generator; its sole purpose is to assist the user in
programming the FluxSPU architecture without diving into the details of mapping operations and
applying optimizations provided by the ISA.

Results. Canalis is implemented in Register Transfer Level and a commercial 28 nm standard cell
library. It is evaluated with eight distinct benchmarks, including complete workloads of Bluetooth
and WiFi applications. These workloads incorporate multiple kernels executing concurrently and
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seamlessly pipelined. We compare Canalis against several baselines: a mobile CPU, a mobile Graph-
ics Processing Unit (GPU), and equivalent ASIC implementations for each benchmark. Compared
to the former two, Canalis achieves an average speedup of 13.4× and 6.6×, area normalized speedup
of 29.6× and 130.5×, and energy savings of 189.8× and 283.9×, respectively, due to the parallelism
achieved by MIMD processing. When compared to equivalent ASIC implementations, Canalis is
within 2.4× of energy efficiency.

Key contributions of this work include:

(1) Analysis of the challenges associated with executing wireless communication workloads and
stream processing on conventional compute models and identifying inefficiencies.

(2) Identification of a common program structure in processing nodes of spatial architectures
after mapping wireless communication workloads, coupled with proposed optimizations
across the new FluxSPU ISA and microarchitecture specifically tailored to target these
structures.

(3) Proposal of the FluxSPU ISA, an instruction set optimized to enhance loop operations
and reduce the II for individual nodes within the FluxSPU fabric. This includes a detailed
quantification of the effectiveness of these optimizations with examples.

(4) Design of the FluxSPU fabric, a spatial architecture crafted to support real-time stream
processing of wireless communication workloads.

(5) Development of a co-designed software stack that includes a programming interface, CER,
specifically designed to describe stream processing workflows. This interface, along with a
mapper, efficiently maps computations onto the FluxSPU.

(6) Implementation of the Canalis framework (including architecture and software stack) and
comparisons against a mobile CPU, a mobile GPU, and equivalent ASIC implementations.

2 Background
Real-time streaming wireless communication workloads exhibit unique characteristics and con-
straints. They require specialized computing platforms that are both high-performance and adapt-
able. This section explores the aspects of the target application domain and the potential for
programmable spatial architecture as a solution.

2.1 Wireless Communication Workload Characteristics
Wireless communication features constantly evolving protocols, distinctive computational require-
ments, and a wide range of applications from IoT devices to radar systems. The advent of 6G and
other emerging technologies necessitates computational platforms that can adapt to these changing
demands. This poses a significant challenge for ASICs, which despite their optimized performance
for particular tasks, face difficulties with scalability and adaptability.

This inflexibility in specialized hardware solutions leads to the “accelerator wall” [24, 30].The time
and resources required to develop these dedicated accelerators, combined with their inflexibility,
put them at risk of becoming obsolete before recouping their initial investment [79], especially
given the pace at which wireless communication technologies evolve.

Critical to these workloads is the need for high throughput and minimal latency, essential for
meeting the demands of the protocols. Consequently, there is a need for platforms capable of
either concurrent kernel execution or rapid reconfiguration, thereby optimizing resource allocation
and processing timeframes. Moreover, wireless communication workloads often involve multiple
DSP algorithm kernels in pipelined configurations [55]. These kernels, designed for streamed data
handling, limit the applicability of conventional caching mechanism, and increase the reliance on
direct memory access, underscoring the importance of efficient, concurrent kernel processing.
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Fig. 2. Diverse data access and compute patterns common in wireless communication including (a) operation
on each data sample, (b) continuous and overlapped access, and (c) feedback loop (d) strided access.

The nature of computation within these workloads is also diverse (Figure 2). Tasks range from
those that can leverage DLP—such as Symbol Modulation and Finite Impulse Response (FIR)
filters—to more complex patterns like the feedback mechanisms in Cascade Integrate-Comb
(CIC) filters or large-stride data handling in Fast Fourier Transform (FFT) [32]. These varying
patterns present distinct challenges in achieving efficient parallelization and resource allocation.

The computational challenges posed by evolving wireless communication protocols highlight
the need for platforms capable of rapid processing and chained execution of diverse kernels
with minimal memory access overhead. As these systems must frequently undergo updates or
reprogramming, ensuring these operations can be performed within the tight constraints imposed
by protocol throughput requirements is essential.

2.2 Real-Time Stream Processing Challenges
Real-time stream processing for wireless communication faces several efficiency challenges. Conven-
tional load/store assist models, with their reliance onmemory hierarchies for parallel processing, are
ill-suited for handling the sequential nature of streaming data, a limitation highlighted in Figure 3.
Analysis based on the Roofline model [97] identifies these operations as memory-bound, with data
transfer constraints significantly reducing computational throughput, despite high theoretical peak
performance. Wireless communication workloads exacerbate this inefficiency, particularly through
the indeterministic arrival of data. Event-driven IoT systems are examples of this unpredictability,
which conventional load/store architectures incur overheads due to the need for buffering data
before processing. The continuous processing demands in certain wireless communication kernels
such as filtering further strain these architectures, rendering typical batch processing and buffering
techniques less effective, since the repetition of the “tail” of the last batch of data is required to
ensure correct computation results. Variable data rates present additional complications, challeng-
ing the efficiency of conventional systems, especially when these systems must accommodate data
sampling rate inconsistencies with large input buffers, leading to suboptimal resource utilization.

Several studies [20, 41, 65] have investigated strategies for decoupling memory access from
computation. However, the unpredictable nature of real-time data streams in wireless communica-
tion requires more resilient solutions. The direct execution model (Figure 3(b)) proposes a viable
alternative. This approach minimizes reliance on memory hierarchies, reducing associated data
access and movement overheads. It seeks to blend the high-performance aspects of ASICs with
the flexibility of programmable architectures, combining the best of two worlds as opposed to
conventional compute platforms.

2.3 Limitations of Conventional Programmable Platforms
Conventional programmable platforms exhibit fundamental inefficiencies in real-time stream pro-
cessing. General-Purpose Processors provide a broad computational utility but suffer inefficiencies
in scenarios requiring optimized pipeline management and minimal branch operations [39]. Their
architectural framework, although flexible, isn’t inherently designed to accommodate the specific
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Fig. 3. Comparison of (a) load/store assist model and (b) direct execution model when executing constant
addition to an input data stream. The input arrives in sequence and the arrival time is indeterministic. The
compute time of model (a) is shorter but overall latency is longer than model (b) due to memory access.

throughput and latency demands, particularly when data reuse is minimal. In contrast, GPUs excel in
scenarios that capitalize on high parallelism. However, their performance degrades with workloads
presenting intricate data dependencies, common in wireless communication tasks (Figure 2(c)). This
limitation stems from their parallel processing nature, which is not adaptive to the serialized data
patterns found in such workloads, leading to suboptimal resource utilization. Field-Programmable
Gate Arrays offer efficient customization for task-specific operations. Their shortfall becomes
evident in their reconfiguration latency, which is detrimental to tasks necessitating real-time
processing adaptability [89].

2.4 Programmable Spatial Architecture
Spatial architectures are recognized for enabling DLP and high data reuse, crucial for minimizing
memory access overheads. They achieve this by utilizing an array of PEs interconnected through
on-chip networks, aligning well with the demands of wireless communication [50, 51, 61].

The PEs of spatial architectures are diverse, extending from fixed-function arithmetic units to
those with fully programmable cores that support various dataflow or Von Neumann-style compu-
tations. While architectures based on fixed-function units are efficient in terms of throughput and
energy, they lack the flexibility required to adapt to evolving workloads in wireless communication.
This limitation underscores the importance of programmable spatial architectures [21, 43, 96]. By
spatially distributing operations originally time-multiplexed, these architectures reduce switching
activity in the datapath, providing reconfigurability atop the benefits of DLP and data reuse.

The broad spectrum of programmable spatial architectures requires comprehensive classification
methods to facilitate understanding and comparison. REVEL [94] presents a comprehensive taxon-
omy based on execution scheduling (static or dynamic) and PEs use (dedicated or shared). Chen
et al. [18] focus on task scheduling dynamics of spatial architectures from two aspects, mapping
and task issuing. Our proposed architecture, FluxSPU, employs a static mapping approach with
dynamic task issuing, featuring shared, time-multiplexed operations for each PE. The architecture
adheres to a static schedule and mapping scheme due to the deterministic computation patterns of
the kernels involved. However, the execution timing is dynamic and based on data availability [69],
a crucial adaptation that enables real-time stream processing efficiency.

3 Why Develop a New Framework?
The goal of Canalis is to develop a framework to meet the demands of real-time stream processing
in wireless communication systems. Our solution includes improvements at different levels of
abstractions from a single PE to the entire spatial architecture. Canalis is accompanied by a
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Fig. 4. Examples of “Basic Structure,” including (a) Standalone Atomic Instruction Loop, (b) Composite
Instruction Loop, and (c) Composite Instruction Loop containing multiple Atomic Instruction Loop.

co-designed software stack, which not only optimizes system performance but also provides a more
intuitive interface for subject matter experts.

3.1 Optimizing Throughput Independent of Frequency
It is crucial to maintain protocol-specified throughput when executing stream processing of wireless
communication workloads. Essentially, throughput is the product of frequency and output per
cycle. From an energy conservation perspective, it is preferable to minimize frequency, thereby
necessitating the maximization of output per cycle (i.e., the throughput independent of frequency)
all within the boundaries of stream processing constraints.

Programmable spatial architectures stand out in this regard due to their innate support for task-
level parallelism (TLP) and data reuse, essential for enhancing per-cycle output (Section 2.4).
However, we do not introduce additional DLP due to the real-time processing considerations
(Section 2.2). On the other hand, parallel input data (e.g., from a Multiple-Input Multiple Output
(MIMO) system) continue to be processed concurrently. We further eliminate reprogramming time
for complete workloads that contain diverse kernels by simultaneously mapping multiple kernels
on the fabric, and connecting the output of one kernel to the input of another [17, 84], thereby
reducing memory access and re-programming overhead.

Wireless communication workloads typically exhibit a periodic nature, wherein the same op-
erational schedule recurs throughout each loop iteration. This repetition aligns the concept of
modulo scheduling [29, 58]. Triggered by data arrival [69], such dynamic scheduling maintains
system agility, effectively reducing the II—the number of cycles between successive iterations,
which directly affects the overall throughput.

We recognize that the ultimate throughput is constrained by the PE with the lowest throughput.
Prior works [8, 86] have utilized circuit techniques to overcome this bottleneck. In contrast, we
identify that after operations are spread out across PEs, a “Basic Structure” of program is common in
each PE, especially in the wireless communication domain, where operations are periodic. Multiple
examples of such “Basic Structure” are depicted in Figure 4, illustrating a “Composite Instruction
Loop” that encompasses several “Atomic Instruction Loops,” each dedicated to a discrete operation.
Therefore, we propose an innovative ISA and microarchitecture optimized for this “Basic Structure,”
ensuring a consistent one computation per cycle for each PE.

Furthermore, within each PE, we implemented pipelined Functional Unit (FU) reordering
that provided Instruction Level Parallelism (ILP) within each PE while pertaining the order of
data sequence in and out of the PE. The optimizations applied to the proposed Canalis framework
are summarized in Figure 5. On a system level, FluxSPU fabric can be statically partitioned to
support concurrent execution of independent workload instances. Although this does not enhance
the throughput of individual workloads, it increases the throughput of the fabric and the overall
hardware utilization.
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Fig. 5. Optimizations from all levels of abstraction to enhance Canalis throughput.

3.2 Spatial Architecture for Stream Processing of Wireless Communication
While the FluxSPU architecture shares high-level similarities with prior works [34, 65, 72], it
distinguishes itself by integrating enhancements essential for stream processing. Notably, we have
adapted the fabric boundaries to the demands of real-time processing scenarios by substituting
traditional load/store operations with push/pop mechanisms. This modification treats input and
output data as sequentially ordered streams, catering to the continuous and sequential arrival
nature of dataflow, rather than viewing them as discrete data units.

Within each PE, we have implemented microarchitectures co-designed with the proposed ISA to
further optimize throughput. Additionally, we cater to domain-specific computational demands by
integrating specialized functional units, such as CORDIC and dividers, complementing the standard
computations of adders, multipliers, and logical units.

3.3 Software Stack for Programming the FluxSPU Fabric
Achieving high performance and efficiency often compromises the presence of a robust software
stack. Many prior programmable spatial architectures [8, 70, 88, 101–103] targeting stream process-
ing lack a user-friendly programming interface, creating a barrier for subject matter experts [90]
unfamiliar with low-level details. On the other hand, most existing spatial architectures that in-
corporate software stacks typically offer compiler support through high-level languages like C/C++
[10, 83, 86] or require additional program annotations [33, 34, 94]. These methods, however, predom-
inantly depend on the conventional load/store memory model, failing to accommodate the direct
execution model essential for real-time stream processing as discussed in Section 2.2. To address
these issues, we introduce a software stack, which includes the CER, a programming interface that
deviates from the typical abstractions of high-level languages, offering a more immediate descrip-
tion of the computational events. Alongside CER is a mapper for distributing computations across
PEs efficiently while applying unique optimizations presented by our ISA. Designed as an abstract
representation of computations, CER appeals to professionals who are comfortable with conceptual
models like block diagrams, providing an interface that melds familiarity with technical precision.

4 FluxSPU ISA
The FluxSPU ISA is tailored to meet three primary objectives: maximize each node’s throughput,
minimize datapath switching during program execution, and ensure adaptability to continuous
data streams. These goals come to fruition through several optimizations. First, FluxSPU adopts a
distinct programming model that perceives operands as continuous streams of arbitrary lengths,
diverging from traditional approaches that handle discrete data or vectors of fixed lengths. Second,
the ISA incorporates a specialized field in certain instructions, referred to as the “Throughput
Enhancer.” This field facilitates the seamless integration of computations, combining loop controls
within a single instruction. Finally, the microarchitecture of FluxSPU nodes (detailed in Section 5)
is meticulously refined to bolster these enhancements, avoiding overheads and reducing switching
activity of the datapath.

4.1 High-Level Model of FluxSPU Nodes
Figure 6 illustrates the high-level model of a FluxSPU Switch and a FluxSPU PE. Both types of
nodes are composed of two primary components: the Control and the Datapath. Instructions are
loaded into the Control of PEs and Switches before program execution commences.
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Fig. 6. High-level model of FluxSPU Switch and PE. LUT, lookup table.

Fig. 7. Structure of different types of instructions, including (a) Route Configuration of Switch, (b) Start Loop
instruction for constant-bounded loop, (c) Start Loop instruction for polyhedral loop, (d) instruction to load
constant, and (e) generic action type instruction supporting up to three operands.

Switch Programming Model. Switches operate under a static configuration. Once set, data entering
a port is consistently routed (or multicasted) to the designated output port(s) for the duration of
the program. The software stack prevents route conflicts within the Switches, eliminating the need
for arbiters to ensure the correct output sequence. This approach also circumvents the overhead
associated with tagging systems prevalent in architectures that require arbitration. Multiple routes
can coexist in a switch as long as there are no conflicts, which is guaranteed by the software stack.
Figure 7(a) details the structure of a Switch configuration.

PE ProgrammingModel.During each cycle of program execution within a PE, the scheduler within
the Control fetches one instruction from the instruction memory and issues it to the Datapath when
the Datapath is ready. The model is simplified for better understanding; therefore, back-pressure
between the scheduler and the instruction memory can be disregarded for now (i.e., the scheduler
has a sufficiently large buffer for storing instructions).

Throughout the computational process, the FU accesses operands from three types of sources:
external input data streams, constant values, or feedback data streams. After the computation
completes, results can be multicast to external output data streams or fed back into feedback
data streams. This multicast capability realizes the overlapped data access pattern illustrated in
Figure 2(b), and the feedback mechanism enhances throughput for feedback loop access patterns as
shown in Figure 2(c). The feedback data stream ensures that the datapaths for kernels containing
feedback such as Infinite Impulse Response or simple counters can be constructedwithin a PE instead
of hopping through the fabric, reducing the initial interval [86] and increasing the throughput.
Moreover, it reduces hardware utilization as the routing is kept inside the PE.

PE instructions fall into three categories: Loop, Configuration, and Action, all encoded in a
32-bit format, with their structures depicted in Figure 7. Loop type instructions guide the pro-
gram’s execution flow but are not issued to the Datapath. Configuration type instructions handle
computation-related configurations, such as loading constants, and while they reach the Datapath,
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they do not initiate computations. Computation events are initiated by issuing Action type instruc-
tions to the Datapath. However, even if computation events are initiated, the computation will only
be triggered upon data arrival [69], similar to a dataflow machine.

It’s imperative to distinguish between initiating, triggering, and executing a computation within
the FluxSPU programming model. A computation is initiated when the scheduler issues an in-
struction to the Datapath. However, the actual occurrence of the computation depends on data
availability; the Datapath, at this juncture, enters a ready state, poised for action. Only when
valid data becomes available following the initiation does the computation trigger and start to
execute, transitioning from a dormant state to active processing. As certain operations might take
multiple clock cycles to complete, while each PE can only initiate one operation and trigger another
operation in a single cycle, it can execute and complete multiple operations in the same cycle. This
nuanced interplay ensures precision in execution, contingent directly on real-time data readiness,
and maximizes hardware utilization.

4.2 Loop Type Instructions and Configuration Type Instructions
Loop instructions support ordinary loops and polyhedral loops (Figure 7(b) and (c)). There are
two types of Loop instructions. Start Loop initiates a loop, setting the starting value, boundary,
incremental step of the iterator, and return address, while Evaluate Loop determines whether to
loop back or proceed. Both the starting value and boundary can be assigned a constant value,
as seen in standard loops, or derive the current value of another ongoing loop, enabling the
execution of polyhedral loops, which are integral to many complex computational tasks in wireless
communication workloads [94]. FluxSPU is specifically designed to support only data-independent
loop operations, aligning with the needs of the target application. In the domain of wireless
communication, where data-dependent conditional operations are infrequent, the use of ternary
operations by FluxSPU is sufficient. These operations facilitate the conditional “masking off”
of results based on predefined criteria, thus optimizing execution flow. This method avoids the
complexity and overhead associated with more intricate branching mechanisms, which are rarely
necessary given the predictable data patterns typical in wireless communication scenarios.
Configuration instructions (Figure 7(d)) set up the computational environment, usually at the

very start of the program. Due to their infrequent use, and the decision to separate them into
dedicated instructions rather than adopting a Very Long Instruction Word approach, performance
remains uncompromised while keeping the instructions compact.

4.3 Action Type Instructions
In addition to a conventional ISA which specifies the operation, the source, and the destination, the
Action type instructions (Figure 7(e)) implement multiple optimizations. Support of data multicast
provides a more flexible dataflow mapping for spatial architectures, and FluxSPU adds additional
fields that specify accessingmechanisms including Read andConsume, at the data streams’ interfaces
(r/c field in Figure 7(e)). Read allows repeated data reading, while Consume removes data after a
single use. This approach provides flexible data alignment and different consumption rates of data
streams. Common use cases of Read include upsampling and filtering (Figure 2(b)).

The FluxSPU ISA deviates from traditional emphasis on register transfer and data dependency
and focuses on the sequence of computations. This approach is exemplified in its handling of
data streams, operating directly on the “head” of the input stream without the prerequisite of a
defined “stream length.” The interplay between this methodology and the use of loops enables the
creation of sequential data streams of arbitrary length, which significantly amplifies processing
efficiency and system adaptability. Furthermore, since the computation is only triggered upon data
arrival and the order of data in the output data streams is honored by simply appending new data
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Table 1. Operations Supported by FluxSPU ISA

Type Operations Latency

A (Arithmetic) Pass, Pop, Add/Subtract (Overflow or Saturate), Logical
Complex Conjugate, Shift, Bit Reversal, Ternary, Compare 1 Cycle

M (Multiplier) Multiplication and Arithmetic Shift,
Multiplication by Conjugate and Arithmetic Shift 3 Cycles

D (Data Scratchpad) Array Read/Write, FIFO
Queue Read and Write 3 Cycles

N (Non-Linear) Divisiona , Square Roota , Complex Magnitude, Complex Argument,
Complex Rotation, Cartesian to Polar Conversion 7 Cycles

aThe divisor for division, or the input to square root must be real or in polar representation.

to the “tail” without replacing any data, Read-after-Write hazards are handled inherently while
Write-after-Read and Write-after-Write hazards are eliminated. It is important to preserve the order
of data in the data streams transferred between PEs and Switches so that “tags” are not needed.
The optimizations provided by the FluxSPU ISA will strictly follow this constraint while aiming to
enhance the throughput.

The FluxSPU ISA encompasses a wide variety of operations, extending beyond basic arithmetic
and logical functions to include domain-specific computations such as division and rotation, all of
which are summarized in Table 1. Moreover, FluxSPU ISA supports operations related to scratch-
pad memories as FUs inside the PEs. These scratchpad memories are integral for various data
buffering purposes, including the temporary storage of data for swift and efficient access during
computations, the storage of constant values such as matrix weights to ensure consistency across
various operations, and the use of lookup tables to preclude repetitive calculations by provid-
ing immediate access to pre-computed values. A particularly noteworthy feature is the First In
First Out (FIFO) mode. This mode is vital for averting deadlocks in computations, particularly
in instances where both operands originate from the same data stream, yet there is a discrepancy
in their sequential positions within that stream. An illustrative example of this can be seen in
Table 2(g), where the FIFO mode’s systematic data processing approach is crucial for preserving the
integrity of the operational sequence and effectively managing dependencies inherent within the
data stream.

The most unique characteristic of the Action type instructions is the “Throughput Enhancer”
field. This field is dedicated to reducing IIs, significantly enhancing the overall performance of the
FluxSPU architecture. In the next subsection, we will walk through the optimizations provided by
the FluxSPU ISA, with an emphasis on the “Throughput Enhancer” field.

4.4 Increasing Per-PE Throughput
FluxSPU focuses on enhancing frequency-independent throughput, aiming to sustain the application-
demanded throughput at a lower operational frequency and, in turn, reduce energy consumption.
Equivalent ASIC implementations of workloads often realize an ideal II and maximum throughput.
Therefore, FluxSPU’s aspiration is to emulate this level of performance through various optimiza-
tions. Since the Switches are statically configured and do not require arbitration, they always
achieve the theoretical maximum throughput. As a result, the PEs are the main optimization targets.

We will elucidate the efficacy of each optimization with different simple example (Figures 8 to
10) and another example (Figure 11) that combines all optimizations. Given the PE’s capability to
multicast, we opt to express throughput in terms of “average computations triggered per cycle,”
providing a more intuitive understanding than the conventional “average output data per cycle.”
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Fig. 8. Simple example program showing difference between (a) before and (b) after implementing pipelined
instructions and FU reordering, resulting in throughput increase by 1.25×. EL, evaluate loop.

Fig. 9. Simple example program showing difference between (a) before and (b) after implementing Embedded
Atomic Instruction Loop Count, resulting in throughput increase by 2×.

Fig. 10. Simple example program showing difference between (a) before and (b) after implementing Embedded
Composite Instruction Loop Evaluation, resulting in throughput increase by 1.5×. ECL, End Composite Loop.

Fig. 11. Example program with all optimizations implemented, showing that FluxSPU can achieve maximum
throughput for any code with the “Basic Structure” in Figure 4.

Since each PE is a single-issue machine, the theoretical maximum throughput is one computation
triggering per cycle.

The programs selected for this illustration perform straightforward element-wise computations
on two data streams, encompassing operations such as multiplication, addition, and subtraction.
Notably, we stipulate that the multiplication operation takes three cycles, underscoring that our opti-
mizations are designed to be compatible with both single-cycle and multi-cycle FUs. To concentrate
exclusively on the PE’s performance in the context of the proposed architectural enhancements,
we proceed under the assumption of continuous, uninterrupted input data streams.

Instruction Pipelining. Combining the single-issue of instructions with pipelined multi-cycle FUs,
FluxSPU removes structural hazards. Furthermore, FluxSPU supports pipelined instruction issuing, a
strategy that allows for the initiation of new computations immediately after all computations in the
previous instruction are triggered. This method eliminates the need to wait for these computations
to complete, ensuring a smooth, uninterrupted flow of instructions.
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In terms of computation and data output, FluxSPU initiates computations in-order, in alignment
with the sequence of both input data streams and program instructions, yet completes them out-of-
order due to the disparate latencies of FUs. Despite this, FluxSPU upholds the integrity of the output
data stream, keeping it in-order. This consistency is achieved not by inserting No Operations
(NOPs), which would adversely affect throughput, but rather through a low-overhead reordering
mechanism, the specifics of which will be elaborated upon in Section 5. The effectiveness of this
optimization is shown in Figure 8 with an example program.

However, even with the pipelined issuance of Action type instructions, a limitation is presented
by the Loop type instructions. These instructions require continual reassessment, thereby hindering
the attainment of the ideal throughput—one computation initiation per cycle. The subsequent
optimizations will specifically address Loop type instructions to further increase throughput.
Embedded Atomic Instruction Loop Count. The “Throughput Enhancer” field embeds Atomic

Instruction Loop Counts, reducing II associated with evaluating loop returns. To ensure scalability,
especially for large loop counts, the “Factor” field facilitates the decomposition of these larger
counts into instruction sequences with smaller loop segments, all without impacting performance
due to the pipelined nature of all instructions. Furthermore, FluxSPU supports infinite loops, crucial
for adapting to unknown data quantities in real-time processing scenarios at compile time. An
example of the effectiveness of this optimization is shown in Figure 9.

FluxSPU’s spatial design redistributes instructions that would traditionally be time-multiplexed.
Essentially, a loop consisting of several operations on a data stream is restructured as multiple,
pipelined, and repeating instructions across different PEs. This rearrangement of operational order—
akin to the vector chaining strategy in the Cray machines [76]—enhances parallelism and efficiency
in data processing.
Embedded Composite Instruction Loop Evaluation. To further optimize performance, FluxSPU

introduces an extra filed (Loop Control) in the “Throughput Enhancer,” specifically for evaluat-
ing the return condition of the current loop when the condition is straightforward, such as an
increment/decrement of an iterator, or an unconditional loop back. This reduces II for Composite
Instruction Loops that encompass multiple Atomic Instruction Loops by eliminating the need for
a separate instruction for evaluation. Instead, the evaluation is seamlessly incorporated into the
last instruction of the loop, enhancing processing efficiency. An example is shown in Figure 10.
However, for more complex evaluations, an explicit Evaluate Loop instruction remains necessary,
although such scenarios are infrequent. Crucially, this optimization does not extend the critical path,
as the loop evaluation and the FU operations are decoupled, allowing for parallel execution. This
design decision ensures that comprehensive loop processing enhancements do not compromise
overall system performance. An example program that employs all optimizations is shown in
Figure 11.

5 FluxSPU Microarchitecture
Figure 12 presents the detailed microarchitecture of a FluxSPU PE. Each PE in the FluxSPU fabric
connects to four neighboring Switches and no direct connection exists between any two PEs. There-
fore, only the Switches are responsible for routing data, allowing the PEs to focus on computation.
Section 4.1 covered the high-level programming model of FluxSPU PEs and Switches. In this section,
we delve into the specific microarchitectures that support the FluxSPU ISA.

5.1 Inner-Loop and Outer-Loop Handling in FluxSPU PE
The instruction buffer hides the latency of instruction fetch and decoding. Loop type instructions
are managed by the Loop Control Unit in the Control, which contains multiple Loop Handlers, each
responsible for tracking an ongoing loop. As depicted in Figure 7(c) and (d), the instruction specifies

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 4, Article 61. Publication date: November 2024.



61:14 K.-Y. Chen et al.

Fig. 12. Architecture of a PE. The FU has eight possible sources and five possible destinations that are
configured by the scheduler along with the mode of the FU. The Loop Control Unit handles the flow of the
programs. opa, operand a; opb, operand b; opc, operand c.

Fig. 13. (a) Microarchitecture of PE scheduler including a decoder that decodes incoming instruction, a
current count keeping track of the loop count, and configuration register for the source, mode and destination
of the functional unit. (b) Example of pipelined FU reordering maintaining high throughput and correct
output data sequence for FUs with different execution latencies. EML, End Monolithic Loop; inf, infinite loop
or not; rptr, read pointer; wptr, write pointer.

which Loop Handler to allocate, a decision made during assembly generation in the software stack.
Upon fetching a Start Loop instruction, a Loop Handler is allocated, storing the current iteration
count, the branching condition, and the iterator’s step. The Loop Handler receives updates upon
fetching an Evaluate Loop instruction.

The scheduler (Figure 13(a)) manages the Atomic Instruction Loops using a single counter.
After the final computation in the Datapath is triggered, the scheduler initiates the subsequent
computation in the Datapath, encompassing the source of the operands, the FU’s mode, and the
output’s destination. With each computation’s initiation, the counter decrements.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 4, Article 61. Publication date: November 2024.



A Throughput-Optimized Framework for Real-Time Stream Processing 61:15

5.2 Data Stream Handling in Switches and PEs
FluxSPU adopts an asynchronous valid-ready handshaking mechanism, which relieves the compiler
of fine-grained scheduling and facilitates connections between different throughput kernels. This
paradigm is adept at adapting to unpredictable data arrival and consumption, ensuring optimal
dataflow handling. For each operation on data streams, there are producers, consumers, and a
crossbar in between. In managing backpressure, the crossbar will only access the producers and
trigger the computation (or routing in Switches) when all the producers and consumers are “ready”;
this state implies that the producers have valid data and the consumers have “space” in the output
buffer. Since FluxSPU utilizes static mapping, predetermined by the Mapper in the software stack,
no collision will occur, and the crossbars are implemented with simple Sum-of-Product (OR-AND)
structures instead of a more costly arbitration network.

5.3 Pipelined FU Reordering
The buffers that receive output data from the FUs and contribute to the feedback stream and output
streams in the Datapath are specifically designed for two purposes: handling backpressure for
multi-cycle operations and ensuring the correct sequencing of data for out-of-order FU completion,
as discussed in Section 4.4. The data in the buffers are still read out in-order to maintain the correct
sequence for computation. However, data can be written into the buffer in any order, transforming
the buffers from standard queues into something akin to a hybrid between a scratchpad and a FIFO.

As shown in Figures 12 and 13(b), when a computation is triggered, a “future valid” signal is sent
to the destination buffers, advancing the write pointers within. Simultaneously, the current value of
the write pointers (“position” in Figure 13(b)) is sent to the FU, ensuring that when the computation
completes, the data will be directed to the correct entry in the buffer. As the buffers are shallow, this
methodology results in a low overhead implementation since the “positions” require just 2-3 bits.
This approach is a departure from traditional systems that would typically rely on an additional
reordering buffer, introducing unnecessary complexity and potential performance hits.

Using an additional control signal to maintain backpressure is common in prior works (e.g.,
“allocation” signal in [34] PEs). However, FluxSPU further facilitates a form of low-cost ILP within
each PE by ensuring that computations are efficiently reordered. By eliminating the need for
NOP insertions typically required to maintain output sequence integrity, FluxSPU achieves higher
computational throughput without the overhead commonly associated with such enhancements.

6 FluxSPU Fabric
The FluxSPU fabric connects the PEs and the Switches into a scalable 2D array, as shown in
Figure 14. FluxSPU leverages MIMD parallelism, enabling PEs to execute different programs
simultaneously. This feature allows for efficient concurrent kernel execution and TLP across PEs,
spatially distributing operations that might otherwise be time-multiplexed.

6.1 Topology
There are two unidirectional links between connected nodes in the FluxSPU fabric, providing
maximum inter-node throughput. On the FluxSPU fabric’s boundaries are Fabric Ports that connect
to receiving/transmitting components with minimal buffering in an embedded system or stream in-
terfaces in an Systems-on-Chip (SoC). Communication between the Fabric Ports and the Switches
follows the same asynchronous valid-ready handshaking mechanism described in Section 5.2,
realizing the direct processing model proposed in Figure 3 and is adaptive to unpredictable data
arrival.
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Fig. 14. FluxSPU architecture overview, using a 4 × 4 array as an example. There are three types of PEs, each
contain different types of functional units. All connections between PEs, Switches, and ports are systolic. The
Configurator programs each PE and switch through multi-hop configuration buses before program execution.

The Switches in FluxSPU connect to neighboring nodes in all eight directions. With multiple
potential routes between nodes, static configuration of Switches is efficient and effective, reducing
the need for runtime changes. Although communication between PEs must occur through Switches,
the impact on performance is negligible due to pipelined computation.

6.2 Locally Heterogeneous, Globally Homogeneous Fabric
The functional units in the FluxSPU fabric exhibit a locally heterogeneous, yet globally homo-
geneous distribution. Locally, each PE’s functional units mirror real-world usage patterns, with
operations like addition being more common than others, such as division [10, 34]. This local
heterogeneity allows for specialization within the bounds of generalization, minimizing resource
wastage from underutilized functional units. Globally, FluxSPU’s architecture ensures a homoge-
neous distribution, maintaining equal computational capacity and operational diversity across all
PEs, which is consistent with FluxSPU’s ability to execute multiple concurrent workload instances.

The PE’s functional units are categorized into four primary types (Table 1): single-cycle arithmetic
(Type A), multi-cycle multiplier (Type M), multi-cycle non-linear (Type N), and data scratchpad
(Type D). We specifically distinguish multipliers as Type M because of their prevalence in kernels
such as filtering. However, considering they often pair with additions to form Multiply-Accumulate
operations, their density within the fabric is halved.

6.3 FluxSPU Fabric Configurator
Prior to program execution on the FluxSPU fabric, instructions and configurations are loaded
into the PEs and Switches via the Configurator (Figure 14). Given the FluxSPU fabric’s capacity
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Fig. 15. (a) Example of a CERwith three nodes and its corresponding DSG (b) comparison of same computation
results with different resource allocation controlled by the CER. DSG, Data Stream Graph.

for simultaneous execution of independent workloads, the Configurator employs an additional
network, designed to avoid disruption of any ongoing computations. This unidirectional and multi-
cycle network imposes minimal overhead, attributable to its infrequent use (hence, low switching
activity) and the short routing distance between nodes.

Notably, the adoption of a multi-cycle approach, while inducing increased latency for individual
instruction loading, serves an advantageous purpose. This latency is effectively obscured by initiat-
ing the loading process with the node situated at the greatest distance from the Configurator. Such
a methodical sequence of operations ensures that while the instruction traverses the longest path,
subsequent loading activities for other nodes are concurrently underway, thereby maximizing time
efficiency and preserving system performance momentum.

7 Canalis Software Stack
The Canalis software stack comprises two integral components. The first is the CER, an accessible
programming interface designed specifically for the FluxSPU. It simplifies the process of executing
the desired computations on the FluxSPU. It’s important to note that the CER does not function
as a hardware generator nor does it compile programs into a hardware description language; its
sole purpose is to facilitate the programming of the FluxSPU. The second component, known as
the mapper, plays a crucial role following the CER’s utilization. The mapper efficiently assigns
the programs developed with the CER onto the nodes within the FluxSPU, converting them into
the specific instructions of FluxSPU ISA.

7.1 FluxSPU Programming Interface: CER
The introduction of CER aims to provide Canalis users with sufficient architectural detail of FluxSPU
to realize the target computation, relieving the complexity of mapping computations, routing data
between nodes, and applying optimizations inherent in the FluxSPU ISA. For users familiar with
FluxSPU, CER programs can be further enhanced to utilize the full potential of the architecture.
CER strikes a balance between abstraction and flexibility with the following features:

Data Stream Graph (DSG). In contrast to traditional approaches that represent programs as a
Dataflow Graph (DFG), CER employs a DSG. In a DSG, each node corresponds to a specific node
in the FluxSPU fabric, with each edge between nodes symbolizing data streams from a producer
node to a consumer node. An example of CER and its corresponding DSG is shown in Figure 15(a).
The DSG does not contain routing information, leaving these decisions to the Mapper. One notable
distinction between a DFG and a DSG is that in the latter, each node accommodates multiple
instructions. If each node in the DSG was replaced with that node’s DFG, the result would be the
DFG for the whole fabric. These instructions correspond to individual programs containing multiple
instructions loaded into the FluxSPU array’s nodes. Various instructions within the same node may
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access the same incoming edges (data streams) or contribute outputs to the same outgoing edges,
aligning with the programming models (Section 4.1).

The CER describes the DSG using expressions akin to the FluxSPU ISA. It is required for the
programmers to differentiate nodes in their CER programs. The requirement is crucial, as it may
lead to different throughput when mapped onto the FluxSPU fabric even with the same computation
results, as illustrated in Figure 15(b).This approach provides users greater authority in managing the
balance between performance and resource utilization. During the mapping process, multiple nodes
in the CER may be mapped onto the same FluxSPU node. The Mapper ensures this consolidation
does not compromise overall throughput, only merging nodes that can be realized by a single
Switch as multiple routes can coexist in a Switch.
CER Computation. The computation expression within the CER framework closely mirrors the

structure of Action type instructions. It encompasses the number of executions, operation type,
input operands, and output streams. Each Action type instruction in CER has the following: the
number of repetitions of the instruction, either a positive integer or “Inf” for infinity, then “—” and
the opcode, then “:” and one or multiple input operands, separated by commas when there are more
than one, then “»” followed by the output operands, also separated by commas. The framework
defines five distinct operand types:

(1) Static Constants: Symbolized by a preceding “#,” these constants are analogous to the imme-
diates in traditional ISAs. Configuration type instructions are employed to load them.

(2) Dynamic Constants: Identified by an “@” symbol before the operand name, their exact values
remain elusive at the programming phase, yet they are loaded from the Configurator prior
to program execution. This distinction fosters code adaptability, especially in computations
like filtering where the dataflow remains consistent but weight values vary with each run.

(3) Feedback Stream: Denoted by the keyword “fb,” this operand establishes a localized feedback
dataflow. It significantly bolsters throughput and conserves hardware resources. However,
this edge isn’t explicitly represented in the DSG as it is local to a node.

(4) Inter-Node Stream: These streams represent the edges in the DSG, characterized by one
producer node and one consumer node. Even though FluxSPU’s ISA supports multicasting,
distinct output streams must be represented individually. Inter-node streams are denoted by
strings beginning with a letter.

(5) Fabric Ports: Prefaced with the “port” keyword, these streams are variants of inter-node
streams where one end is already mapped during programming. Their pivotal role becomes
evident in subsequent mapping phases.

An “&” symbol can be prefixed to input streams (feedback, inter-node, and ports) to support the
Read operations detailed in Section 4.3, allowing for referencing the “head” of a given stream. By
default, references of streams cause the head to be consumed.
Loops in CER. Atomic Instruction Loops of one repeated instruction in CER are seamlessly

integrated into computations, echoing the approach found in FluxSPU’s ISA. This means that their
presence is implicit within computational expressions, without the need for distinct loop constructs.
On the other hand, Composite Instruction Loops for multiple different instructions in CER are
explicitly represented using the “FOR” and “ENDFOR” constructs. These structures embed the
loop count directly, as demonstrated in Figures 15(a) and 16(a), with the same format as Action
type instructions. It is significant to highlight that CER is equipped to handle polyhedral loops. To
facilitate this, the loop counts—whether for the “FOR” construct or the associated computation—are
denoted by variables with a “iter” prefix, followed by the start value and step value, all separated by
commas. This convention sets the stage for a later association with specific Loop Handlers during
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Table 2. Example Mapping of Different Dataflow on Canalis

(a) Multicast: A single data stream is sent to multiple destinations; (b) Cascade: The output of one node is the input of
another node; (c) Merge: Multiple data streams merged into a single interleaved stream; (d) Split: A single data stream
is sent to multiple streams, time-interleaved; (e) Feedback: The output stream feedbacks to be computed with the input
stream; (f) Up-sample: Each input data are repeated; (g) Stagger: An input stream is divided into two parts, and samples
distant in arrival sequence are paired. An additional PE is used to prevent deadlock; and (h) Down-sample: Data are
periodically discarded in an input data stream before sent to the output stream.

the phase of assembly code generation. The CER representation of common dataflow in wireless
communication are summarized in Table 2.

7.2 Mapping CER to FluxSPU
Themapping phase encompasses several key steps: parsing the CER to form the corresponding DSG,
determining the mapping order, allocating nodes, routing, and generating the FluxSPU assembly
code. Given that the CER is closely aligned with the FluxSPU ISA, the tasks of parsing it into a
DSG and generating assembly code are relatively straightforward. Consequently, the subsequent
discussion will primarily center on the mapping order, node allocation, and routing.
Mapping Order Determination. During the parsing phase, apart from generating the DSG to

establish relationships between nodes, an “Instruction Dependency Graph” is also constructed.
This graph is pivotal in ascertaining the sequential order in which different nodes are mapped. The
procedure initiates with producer nodes that are identified as Fabric Ports, and the traversal ensues
along the dataflow of the program. For every instruction, its position or “score” in the sequence is
determined by taking the highest score among its producers and then incrementing that value by
one.The score of Fabric Ports as producers are 0 as the initial condition. If an instruction’s producers
cannot be traced back to a Fabric Port, the producer–consumer relationship is temporarily inverted.
This inversion continues until the node’s producer can be traced back to a Fabric Port.The underlying
principle of this method hinges on starting from what is most known or established. Since most
operations possess a higher number of input operands compared to outputs, it’s imperative to initiate
the tracing from the absolute “roots” of all producers, which are the Fabric Ports serving as inputs.
The rationale for reversing the order in certain cases is to consistently beginwith Fabric Ports. Failing
to adhere to this approach risks mapping a node without any reference or constraints, potentially
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Fig. 16. (a) Example of polyhedral loop representation in CER (b) scores assigned to each node of the
Instruction Dependency Graph in Mapping stage.

compromising the integrity of the entire mapping sequence and resulting in multiple “backtracks”
in the subsequent allocation process. An example of such scoring is shown in Figure 16(b).
Node Allocation and Routing. After establishing the mapping sequence, the process advances

to allocate specific nodes in the FluxSPU fabric for each node in the constructed DSG. For every
DSG node to be mapped, FluxSPU nodes nearest to its already mapped neighbors (both producers
and consumers) are considered as candidates to ensure efficient inter-node communication. It
is imperative that the chosen FluxSPU node contains the necessary functional units. Due to the
non-uniform distribution of functional units across the FluxSPU fabric, this step not only guarantees
the node’s computational capability but also aims for a compact overall mapping as the minimum
number of “Basic Blocks” (2 × 2 array of PEs containing all functional units) is calculated during
parsing. Another key consideration is the feasibility and distance of routing between nodes. In this
regard, the mapper employs the A-star algorithm [40] to find routing paths between nodes. Lastly,
by referencing the DSG, the number of “unmapped neighbors” a node has is determined, ensuring
the selected node has ample surrounding space for potential future allocations.

8 Methodology
Canalis Modeling. We implemented Canalis (10 × 10 FluxSPU Array) using a custom cycle-accurate
model to calculate performance metrics. A prototype of Canalis is implemented and synthesized
using Synopsys Design Compiler with commercial 28 nm standard cell technology. To generate
precise power consumption measurements, we use extensive test vectors to derive the Switching
Activity Interchange Format, which serves as input for the gate-level synthesized designs. While
Canalis is synthesized at 500 MHz, it has the capability to scale up to 1.25 GHz due to its short
critical path. However, Canalis’ high throughput enables it to meet protocol requirements at lower
frequency, improving energy efficiency.

Benchmarks. Canalis’ performance is evaluated using a diverse set of eight benchmarks. This suite
encompasses three commonly utilized kernels and five wireless communication workloads, summa-
rized in Table 3. These benchmarks were specifically chosen as they encapsulate the characteristics
of pipelined kernels, disparate processing patterns, and variable data rates discussed in Sections 2
and 3. FIR covers the continuous and overlapped access in Figure 2 while FFT requires strided access.
GeMM showcase Canalis’ ability to handle parallel input. Individual kernels in the workloads ex-
ecuted displays Canalis’ adaptability including feedback loop (frequency modulation, CIC), change
of data rate (up-sampling/down-sampling), and domain-specific computations (equalization).

Baselines. We compare Canalis with the CPU and GPU separately in the Snapdragon 855 Mobile
SoC across all benchmarks to assess the performance speedup and energy savings gained from
specialization. Additionally, to understand the energy overhead associated with a more generalized
approach, we compare with the equivalent ASIC implementations for each individual benchmark.

—CPU: Arm Cortex-A76 (@2.8 Ghz): Out-of-Order Core, using optimized CPU libraries for FIR
(CMSIS-DSP [4]), FFT (PFFFT [5]), GeMM (XNNPACK [6]), and trigonometric functions(ARM
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Algorithm 1: Mapping Order Determination
1: procedure Compute_Score(Graph �)
2: ;460;_;8BC ← {} ⊲ empty map
3: A4<>E43_;8BC ← [] ⊲ empty list
4: for all (=>34_:4~, =>34) ∈ �.=>34B do
5: if =>34.?0A4=CB = ∅ and =>34_:4~ [0] = ‘q’ then
6: append =>34_:4~ to A4<>E43_;8BC
7: for all 2ℎ8;3_:4~ ∈ =>34.2ℎ8;3A4= do
8: remove =>34_:4~ from �.=>34B [2ℎ8;3_:4~] .?0A4=CB
9: else

10: ;460;_;8BC [=>34_:4~] ← =>34

11:
12: E8B8C43 ← ∅ ⊲ empty set
13: for all :4~ ∈ ;460;_;8BC do
14: if ;460;_;8BC [:4~] .?0A4=CB = ∅ then
15: ;460;_;8BC [:4~] .B2>A4 ← 0
16: insert :4~ into E8B8C43

17: while |E8B8C43 | < |;460;_;8BC | do
18: for all :4~ ∈ ;460;_;8BC do
19: if :4~ ∉ E8B8C43 and ;460;_;8BC [:4~] .?0A4=CB ⊆ E8B8C43 then
20: ;460;_;8BC [:4~] .B2>A4 ← 1 +max(;460;_;8BC [?0A4=C_:4~] .B2>A4 : ?0A4=C_:4~ ∈

;460;_;8BC [:4~] .?0A4=CB)
21: insert :4~ into E8B8C43

22:
23: for all =>34_:4~ ∈ A4<>E43_;8BC do
24: remove =>34_:4~ from A4<>E43_;8BC
25: if ∃ 2ℎ8;3_:4~ ∈ ;460;_;8BC ∩�.=>34B [=>34_:4~] .2ℎ8;3A4= then
26: =>34.B2>A4 ← 1 + max(;460;_;8BC [2ℎ8;3_:4~] .B2>A4 : 2ℎ8;3_:4~ ∈ ;460;_;8BC ∩

�.=>34B [=>34_:4~] .2ℎ8;3A4=)
27: ;460;_;8BC [=>34_:4~] ← =>34

28: �.=>34B ← ;460;_;8BC
29: categorize_by_score(�)

Optimized Routines [1]). The implementation is compiled with level 3 optimization using the
Android NDK r23c framework.

—GPU: Qualcomm Adreno 640 (@685 Mhz): Includes 384 ALUs with peak 899 GFLOPS compute
throughput. It uses optimized GPU libraries for FFT (clFFT [3]) and GeMM (clBLAS [2]). The
implementation is compiled with level 3 optimization using the Adreno OpenCL SDK v1.5
framework.

—ASIC: We created equivalent ASIC models for each benchmark and synthesized them at the
frequency that meets the required throughput listed in Table 3.

9 Evaluation
9.1 Qualitative Comparison with Prior Works
The design of Canalis is specifically tailored for stream processing in the field of wireless com-
munication. This framework is distinguished by the co-design of its ISA and microarchitecture,
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Table 3. Summary of Benchmarks

Name Kernels Input Sample Rate Output Sample Rate
Standalone
Kernels

FIR, FFT, GeMM N/A N/A

Bluetooth
Modulation

Binary Frequency Shift Keying (BFSK),
Up-sampling, FIR, Frequency Modulation

1 M sample/s 4 M sample/s

Bluetooth
Demodulation

Mixer, CIC, find frequency, FIR,
Down-sampling, BFSK Demodulation

16 M sample/s 1 M sample/s

Wi-Fi
Modulation

Quadrature Amplitude Modulation (QAM),
IFFT, Guard Interval (GI) Insertion

16 M sample/s 20 M sample/s

Wi-Fi
Demodulation

Mixer, CIC, GI Removal, Down-sampling
FFT, Channel Estimation, Equalization,

QAM Demodulation
80 M sample/s 16 M sample/s

Acquisition Mixer, CIC, autocorrelation, find max index 80 M sample/s N/A

which are optimized to maximize throughput for prevalent computing patterns within the target
domain. Unlike most prior works that depend heavily on load/store operations, Canalis focuses
on real-time processing, enhancing performance and significantly reducing latency. Additionally,
Canalis introduces an intuitive programming interface that mirrors the natural dataflow of the
architecture, thereby simplifying system programming.

Despite its specialized capabilities, Canalis has its limitations, primarily its lack of support for
complex branching. This design choice is influenced by the characteristics of common kernels
in wireless communication, such as FIR filtering and FFT processing, where computations are
deterministic. This simplicity allows Canalis hardware to maintain low overhead and high efficiency.
However, it also represents a tradeoff between performance and versatility, limiting its applicability
to specific domains. While this focus narrows the scope of its application, it ensures that Canalis
excels in its target domain: wireless communication.

Due to its uniqueness, directly comparing Canalis with prior works is challenging. Most existing
works employ varied architectures and computational paradigms that do not perfectly align with
the specialized design and objectives of Canalis. This discrepancy necessitates an experimental
setup that compares Canalis against mobile CPUs, mobile GPUs, and equivalent ASICs, as shown
in this section. Consequently, we provide qualitative comparisons between Canalis and various
prior works that share some, albeit not all, of the characteristics of Canalis.

ASIC implementations such as AsAP [8, 102, 103], Troung et al. [88], Tran et al. [87], and DAP
[17] target the same application domain—wireless communication—as Canalis and are capable
of mapping entire workloads onto a computational fabric. The communication between cores
varies, with AsAP [8, 102, 103] and Troung et al. [88] employing asynchronous communication,
while DAP [17] synchronizes data transfers. Canalis aligns more closely with the former due to its
ability to adapt better to real-time data arrival. However, what distinguishes Canalis from these
works is their lack of a software stack, which limits their programmability and the effectiveness of
mapping workloads. Canalis addresses this issue with a co-designed software stack that enhances
accessibility while retaining high performance.

Other prior works, including REVAMP [10], Ultra elastic CGRA [86], and Riptide [34], also provide
both hardware and software stacks. Similar to these works, Canalis recognizes the effectiveness of
heterogeneous distributions of cores with different functionalities. However, their focus is more on
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Table 4. Area and Energy Breakdown of FluxSPU

Name Area (um2) Leakage Power (uW) Total Power (mW)
Scheduler 1,215.2 7.6 0.39

Instruction Memory 1,425.3 9.5 0.15
PE Datapath 6,352.4 28.3 2.12

Functional
Units

A Type 524.6 2.6 0.21
M Type 3,521.7 19.2 4.45
D Type 5,426.2 14.9 1.35
N Type 11,329.1 45.3 7.24

Functional Units Average 7,830.8 31.0 4.92
Configuration Bus 212.4 3.4 0.13

Name Area (mm2) Leakage Power (mW) Total Power (mW)
PE Average 0.017 0.080 7.709

Switch 0.005 0.030 2.100
FluxSPU Total 2.248 11.586 774.506

general-purpose computation, in contrast to Canalis’ domain-specific focus, which allows for more
application-specific optimizations as discussed in Section 4. As a result, Canalis achieves a higher
operating frequency and throughput (in terms of operations per cycle) for similar kernels mapped
onto the fabric. Additionally, both Ultra elastic CGRA [86] and Canalis focus on reducing the II but
employ different approaches. The former utilizes circuit-level techniques, while Canalis focuses on
architectural and microarchitectural optimizations.

9.2 Power and Area Analysis of FluxSPU
Table 4 shows the power and area breakdown for FluxSPU at 500 MHz. The primary source of both,
particularly power, originates from the functional units and datapath. FluxSPU’s area is 2.25 mm2

with a power consumption of 774.5 mW. This aligns with FluxSPU’s goal to emulate ASIC-like
implementation, where the majority of resources are dedicated to compute units.

9.3 Energy Savings Analysis
For the benchmarks that represent real-world workloads, we emulate real-time stream processing
scenarios by measuring the energy consumption per output data sample of Canalis and the baselines
as they meet the throughput requirements listed in Table 3. This approach follows our emphasis on
real-time performance, targeting neither maximum performance nor minimum power, but rather a
finely tuned balance of both. For standalone kernels, we measure power consumption across all
baselines by maintaining uniform throughput, similar to the requirements of the workloads. To
achieve fair emulation, we pipelined memory access, kernel launch, and execution for multiple
batches of data on CPU and GPU, similar to Figure 3(a). The results are summarized in Figure 17,
where certain benchmarks with unmet throughput requirements by the CPU and GPU are marked
in a different color. For those that did not meet the requirement, we report the energy per output
sample for the highest throughput they can achieve. Specific failures include the CPU failing WiFi
Demodulation (4.6×) and Acquisition (20×), and the GPU failing Acquisition (80×), with both
workloads requiring the highest throughput, as shown in Table 3. Acquisition’s unique challenge
includes a kernel of returning the index of the maximum data, which requires reduction and
hinders DLP. Canalis overcomes these challenges and achieves energy savings of 189.8× and 283.9×
against CPU and GPU, respectively, and is within 2.4× of equivalent ASICs. The focus on real-time
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Fig. 17. Energy (vs. Canalis) of CPU, GPU, Canalis, and ASIC across benchmarks. The bars in blue did not
meet the throughput requirements. The average energy overhead of Canalis against equivalent ASICs is
within 2.4×.

Fig. 18. Speedup (vs. CPU) of CPU, GPU, andCanalis. Canalis achieves speedup of 13.4× and 6.6×, respectively.

requirements maintains not only the necessary throughput but also the conservation of energy. By
ensuring “just enough” performance, our approach avoids excessive buffering and computation
followed by idleness, a common pitfall. By optimizing for the exact needs of the application without
overcompensation, we contribute to both system efficiency and sustainability.

9.4 Speedup against Mobile CPU and GPU
For the benchmarks that represent real-world workloads, we measure the performance speedup
of Canalis against the baselines by evaluating the throughput (i.e., amount of data processed in a
second). Unlike the energy analysis, where we focus on real-time requirements, here our emphasis
is on evaluating the highest compute power each platform can achieve. This method allows us to
predict the performance for future standards, as running at the throughput requirement would
merely lead to uniform performance across platforms.

The results are summarized in Figure 18. A significant performance drop for the GPU is observed
in the benchmarks of Bluetooth Modulation and Acquisition. Bluetooth Modulation contains
frequency modulation that forms a feedback loop and Acquisition requires reduction, both of
which present challenges for parallel execution. Additionally, the compute intensity (amount of
computations needed for each data value) is low for streaming wireless communication workloads
compared to the amount of data being processed, due to the large volume of data and common
practice of oversampling. Consequently, the difference in performance between CPU and GPU
is not as significant for individual kernels, as the compute intensity is smaller, so the benefits of
having more compute power are not as prominent. When compared against CPU and GPU, Canalis
achieves an average speedup of 13.4× and 6.6×, respectively. After adjusting for technology [82],
the area normalized speedups are 29.6× and 130.5×, respectively.
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Fig. 19. Throughput comparisons of different optimizations, including Instruction Pipeline (Pipe), Embedded
Atomic Instruction Loop Count (EAL), and Embedded Composite Loop Evaluation (ECLE).While loop unrolling
is not needed when applied EAL and ECLE, we still included scenarios with Full Loop Unrolling (FLU).

This performance analysis not only provides insight into the full potential of Canalis but also
allows us to forecast how it might perform under future standards such as 6G.

9.5 ISA Optimization and Throughput Improvement
Figure 19 illustrates the normalized throughput across various benchmarks with incremental
optimizations as described in Section 4. We included Full Loop Unrolling (FLU) in our baselines,
which assumes infinite instruction memory. Our method, which embeds both Composite Instruction
Loop Evaluation and Atomic Instruction Loop Counts within instructions, negates the need for loop
unrolling. The analysis reveals that: (a) Throughput without instruction pipelining is hampered by
multi-cycle operations such as rotation. (b) FLU with instruction pipelining can match optimized
performance but is impractical. (c) Embedding Composite Instruction Loop Evaluation offers
minimal gains over Atomic Instruction Loop Counts embedding due to spatial distribution of
operations and the ability to hide explicit Composite Instruction Loop Evaluation overhead with
Atomic Instruction Loops with higher loop count. Thus, our approach substantially enhances
performance without the complexity of traditional methods.

10 Related Work
This section discusses and compares Canalis with related works other than those covered in
previous sections. These works include programmable wireless communication accelerators, spatial
architectures, dataflow architectures, and vector machines.
Programmable Wireless Communication Accelerator. Various programmable implementations

have been developed, targeting specific kernels [13, 70, 101, 105] or entire workloads [8, 55, 67,
88, 99, 102, 103]. Most of these works provide high-performance and efficiency but do not offer a
software stack that enables ease of programming and scalability. Unlike the end-to-end frameworks
discussed in previous sections, these particular implementations primarily focus on hardware
aspects, leaving a gap in software support. Canalis extends beyond this limitation by integrating a
robust software stack, enhancing programmability, and paving the way for applications outside of
wireless communication.

Spatial Architecture. Spatial architectures are a compelling approach for accelerating computations
across a diverse range of domains, some serving as standalone structures [9, 15, 16, 22, 23, 28, 31,
44, 53, 56, 57, 59, 62–64, 72, 77, 78, 80] while others are integrated into the datapaths of processors
[11, 37, 38, 98]. Canalis is versatile and can adapt to both. As a standalone architecture, Canalis can
perform near frontend executions. On the other hand, its straightforward push-pop interface allows
seamless integration within more sophisticated processors or SoC. What differentiates Canalis is
its direct execution model (Section 2) that enables real-time data processing without intermediate
data storage. The co-design of CER provides a concise representation of the programming model.
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Some works target spatial architecture generation [14, 19, 33, 54, 60, 71, 93] while others focus
on compilers for spatial architectures [42, 58]. In contrast, the software stack provided by Canalis
including the CER does not generate hardware nor does it compile programs into a hardware
description language; its sole purpose is to simplify the programming of the FluxSPU architecture.

Dataflow Architectures and Vector Machines. Dataflow architectures [7, 12, 26, 52, 83] and hybrid
dataflow Von-Neumann architectures [66, 100] launch execution upon data arrival, enabling dy-
namic scheduling, while vector machines [20, 35, 49, 75] utilize DLP. Canalis is closer to dataflow
architectures and adapts to indeterministic data arrival, similar to dataflow machines, but avoids the
complexities of tag-matching by leveraging application-specific characteristics, ISA optimization,
and pipelined FU reordering (Section 5). This ensures that the sequence of data is maintained
without additional overhead. Compared to vector machines, Canalis primarily utilizes pipeline
parallelisms, only resorting to DLP when data arrive concurrently (e.g., MIMO systems).
Streaming Architecture. Streaming optimizations can be broadly divided into two approaches.

The first approach [46, 65, 68, 91, 92, 95] focuses on optimizing memory access patterns, leveraging
micro-architecture and compiler strategies to form coherent data streams from memory. Although
efficient in many scenarios, this approach might not be suited for unpredictable, real-time data
processing (Section 2). The second approach, which is closer to Canalis, is designed to handle
real-time incoming data streams [25, 73, 81], processing them directly as they arrive.

Language, ISA, and Compiler Support. Language and ISA support play a critical role in bridging
the gap between hardware capabilities and application requirements. Triggered Instructions [69]
present a control paradigm for spatial architectures, where scheduling is triggered by data arrival.
Though similar to Canalis, it prioritizes flexibility, whereas Canalis emphasizes throughput since
the order of operations is deterministic. Additionally, there have been significant efforts [27, 36, 85]
to provide language, ISA extension, and compiler support for streaming applications. These works
focus on augmenting traditional compute platforms, different from Canalis, which targets a new
architecture. Furthermore, some prior research [47, 48, 74] has focused on creating domain-specific
languages for describing spatial architectures and generating hardware. Canalis takes a different
approach with a co-designed software stack that simplifies the representation of computations
using CER and maps computation on the proposed architecture. Canalis’ software stack does not
generate hardware, but focuses on assisting the users program FluxSPU.

11 Conclusion
In the domain of wireless communication, conventional computing platforms struggle to meet the
demands of real-time stream processing. We present Canalis, a throughput-optimized framework
designed to achieve efficient stream processing with minimized energy consumption. It includes
a programmable spatial architecture, FluxSPU, co-designed with a software stack including a
programming interface, CER, and a mapper. Canalis simplifies the programming process, achieving
an optimal balance between power consumption and performance.

We evaluate Canalis using eight wireless communication benchmarks. The results show its
superior performance and efficiency over existing mobile CPU and GPU while being close (2.4×) to
individual equivalent ASIC implementations. Compared to state-of-the-art libraries on a mobile
CPU and a mobile GPU, Canalis achieves an average speedup of 13.4× and 6.6×, area normalized
speedup of 29.6× and 130.5×, and energy savings of 189.8× and 283.9×, respectively.
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